The Masters of Vision. From Visionary Science to Visual Suggestions


  • Domenico Mediati Dipartimento di Architettura e Territorio (dArTe), Università degli Studi Mediterranea di Reggio Calabria



Non-Euclidean geometries, Topology, Impossible objects, Möbius, Penrose, Escher


The studies of Isaac Newton, in the 17th century, laid the foundations of classical physics. In the 19th century, however, some theories questioned Newtonian physics, whose weakness came from the application of concepts of Euclidean geometry to a space that may not be so. In 1817 Gauss, during his studies on the fifth postulate, formulated the hypothesis that for a point outside a line it was possible to draw more than one line parallel to it. Thus, he laid the premises of non-Euclidean geometry.
In 1884 Abbott published the novel Flatland, in which he hypothesized a multi-dimensional space. The cultural debate thus opened up to visionary artistic expressions, derived from equally ‘subversive’ scientific concepts. Not to be neglected are also the studies of Poincaré that led to the topological space. These suggestions were anticipated by Möbius, in 1858, with the single-sided surfaces. The demolition of Newtonian dogmas also intertwined with perception studies. This led to the “impossible objects” of Reutersvär and Lionel and Roger Penrose. In the same years, also Escher shared the same passion for perceptual experiments.
The paper aims to highlight the relationship between art and science which, between the 19th and 20th centuries, find a common ‘visionary’ inspiration. Often these paths are intertwined, sometimes one anticipates the other, but together they contribute to open pathways that mark the evolution of thought and art.


Abbott, E. A. (2004). Flatlandia. Racconto fantastico a più dimensioni. Milano: Adelphi.

Agazzi, E., Palladino, D. (1978). Le geometrie non-euclidee e i fondamenti della geometria. Milano: Mondadori.

Bill, M. (1977). Come cominciai a fare le superfici a faccia unica. In A. C. Quintavalle (a cura di). Max Bill. Catalogo della mostra. Parma: Università di Parma.

Courant, R., Robbins, H. (1961). Che cos’è la matematica? Torino: Boringhieri.

De Rosa, A., Sgrosso, A., Giordano, A. (2002). La Geometria nell'immagine. Storia dei metodi di rappresentazione. Dal secolo dei Lumi all'epoca attuale. Vol. 3. Torino: UTET.

Einstein, A. (1916). Die Grundlagen der allgemeinen Relativitätstheorie. In Annalen der Physik, vol. 354, Issue 7, pp. 769-822 <> (accessed 17 November 2021).

Emmer, M. (2003). Mathland. Dal Mondo piatto alle ipersuperfici. Torino: Testo & Immagine.

Giorgini, V. (2006). Agora. Dreams and Vision. In l’Arca, n. 214, n. 5, pp. 34-41. <> (accessed 19 November 2021).

Hinton, C. H. (1888). A New Era of Thought. London: Swan Sonnenschein & Co.

Imperiale, A. (2001). New Bidimensionalities. Boston: Birkhauser.

Kant, I. (2000). Critica della ragion pura. Roma-Bari: Laterza. Orig. ed.: Kritik der reinen Vernunft, 1781.

Lobachevskiĭ, N. I. (1856). Pangéométrie ou, Précis de géométrie fondée sur une théorie générale et rigoureuse des parallèles. Kazan: Universitet, sbornik uchenykh stateĭ.

Mangione, C. (1971). Logica e fondamenti della matematica. In L. Geymonat (a cura di). Storia del pensiero filosofico e scientifico. Vol. III, pp. 155-203 Milano: Garzanti.

Manning, H. P. (1914). Geometry of Four Dimensions. New York: The Macmillan Company.

Mediati, D. (2008). L’occhio sul mondo. Per una semiotica del punto di vista. Soveria Mannelli: Rubbettino.

Penrose, L. S., Penrose, R. (1958). Impossible objects: a special type of visual illusion. In British Journal of Psychology, vol. 49, pp. 31-33.

Poincaré, H. (1923). Pourquoi l’espace a trois dimensions? In De Stijl, n. 5, pp. 66-70.

Riemann, B. (1868). Uber die Hypothesen, welche der Geometrie zu Grunde liegen. Göttingen: Dieterichsche Buchhandlung.

Saccheri, G. (1733). Euclide ab omni naevo vindicatus, sive conatus geometricus, quo stabiliuntur prima ipsa universae geometriae principia. Mediolani: Montanus.

Sgrosso, A. (1986). L’immagine dell’architettura: nuove e antiche geometrie. In I fondamenti scientifici della rappresentazione. Conference Proceedings. Roma 18-19 April 1986. Roma: Università degli Studi di Roma “La Sapienza”, Dipartimento di Rappresentazione e Rilievo.

Stringham W.I. (1880). Regular Figures in n-Dimensional Spaces. In American Journal of Mathematics, mar., 1880, Vol. 3, No. 1, pp. 1-14.



How to Cite

D. Mediati, “The Masters of Vision. From Visionary Science to Visual Suggestions”, diségno, no. 9, pp. 97–108, Dec. 2021.



Visionary Masters