Catoptric Anamorphosis on Free-Form Reflective Surfaces

Authors

  • Francesco Di Paola Dipartimento di Architettura, Università degli Studi di Palermo
  • Pietro Pedone Dipartimento di Architettura, Università degli Studi di Palermo

DOI:

https://doi.org/10.26375/disegno.7.2020.19

Keywords:

anamorphosis, science of representation, generative algorithm, free-form, design

Abstract

The study focuses on the definition of a geometric methodology for the use of catoptric anamorphosis in contemporary architecture. The particular projective phenomenon is illustrated, showing typological-geometric properties, responding to mechanisms of light reflection. It is pointed out that previous experience, over the centuries, employed the technique, relegating its realisation exclusively to reflecting devices realised by simple geometries, on a small scale and almost exclusively for convex mirrors. Wanting to extend the use of the projective phenomenon and experiment with the expressive potential on reflective surfaces of a complex geometric free-form nature, traditional geometric methods limit the design and prior control of the results, thus causing the desired effect to fail. Therefore, a generalisable methodological process of implementation is proposed, defined through the use of algorithmic-parametric procedures, for the determination of deformed images, describing possible subsequent developments.

References

Accolti, P. (1625). Lo inganno degli occhi. Firenze: Pietro Cecconcelli.

Baltrušaitis, J. (1969). Anamorfosi o magia artificiale degli effetti meravigliosi. Milano: Adelphi.

Bianconi, F., Filippucci, M. (2019). Digital wood design: innovative techniques of representation in architectural design. Cham: Springer.

Buratti G. (2012). Generative algorithms and associative modelling to design articulate surfaces. In M. Rossi (Ed.). Relationships between Architecture and Mathematics. Proceedings of Nexus Ph.D. Day, pp. 93-98. Milano: McGraw-Hill.

Čučaković, A., Paunović, M. (2015). Cylindrical Mirror Anamorphosis and Urban-Architectural Ambience. In Nexus Network Journal, No. 17, pp. 605-622.

Càndito, C. (2011). Il disegno e la luce. Fondamenti e metodi, storia e nuove applicazioni delle ombre e dei riflessi nella rappresentazione. Firenze: Alinea Editrice.

De Rosa, A., et al. (2012). Memoria e oblio. Scoperta e rilievo digitale dell’anamorfosi murale di J.-F. Nicéron. In Atti della Conferenza Nazionale ASITA. Fiera di Vicenza, 6-9 novembre 2012, pp. 595-602.

De Comité, F. (2010). A General Procedure for the Construction of Mirror Anamorphoses. In G.W. Hart, R. Sarhangi (Eds.). Bridges Pécs-Mathematics, Music, Art, Architecture, Culture, pp. 231-239. Pécs: Tessellations Publishing.

De Comité, F. (2011). A New Kind of Three-Dimensional Anamorphosis. In R. Sarhangi, C. Séquin (Eds.). Bridges Coimbra-Mathematics, Music, Art, Architecture, Culture, pp. 33-39. Coimbra: Tessellations Publishing.

De Comité, F., Grisoni, L. (2015). Numerical Anamorphosis: an Artistic Exploration. In SIGGRAPH ASIA 2015. Kobe, Japan.

Di Lazzaro, P., Murra, D. (2013). L’Anamorfismo tra arte, percezione visiva e ‘‘Prospettive bizzarre’’. Roma. ENEA.

Di Paola, F., et al. (2015). Anamorphic projection: Analogical/digital algorithms. In Nexus Network Journal, No. 17, pp. 253-285.

Di Paola, F., Inzerillo, L., Santagati, C. (2016). Restituzioni omografiche di finte cupole: la cupola di Santa Maria dei Rimedi a Palermo. In G.M. Valenti. (a cura di). Prospettive Architettoniche: un ponte tra arte e scienza, pp. 163-189. Roma: Sapienza Università Editrice, Vol. 2.

Eigensatz, M., et al. (2010). Paneling architectural freeform surfaces. In ACM SIGGRAPH, No. 45, pp. 1-10.

Flöry, S., Pottmann, H. (2010). Ruled Surfaces for Rationalization and Design in Architecture. In LIFE information. On Responsive Information and Variations in Architecture, Proc. ACADIA 2010, pp. 103-109.

Gardner, M. (1975). L’affascinante magia dell’arte anamorfica. In Le Scienze. Vol XIV, No. 81, pp. 92-99.

Hunt, J.L., Harding MacKay A. (2011). Designing a human-scale cylindrical-mirror anamorphosis for an outdoor art installation. In Journal of Mathematics and the Arts, Vol. 5, No. 1, pp. 1-16.

Nicéron, J.F. (1638). La perspective curieuse, ou magie artificielle des effets merveilleux de l’optique par la vision directe, la catoptrique, par la réflexion des miroirs plats, cylindriques & coniques, la dioptrique, par la réfraction des crystaux: Chez la veufue F. Langlois, dit Chartres, Paris: Pierre Billaine.

Rossi, M., Buratti, G. (2017). Disegno e complessità. Verso nuovi scenari di progetto. In A. Nebuloni, A. Rossi (a cura di). Codice e progetto. Il computational design tra architettura, design, territorio, rappresentazione, strumenti, materiali e nuove tecnologie, pp. 83-87. Milano: Mimesis Edizioni.

Saggio, A. (2007). Introduzione alla rivoluzione informatica in architettura. Roma: Carocci.

Schott, G. (1657). Magia universalis naturae et artis. Pars I, Liber III: Frankfurt: Joannis Godefridi Schönwetteri.

Ugo, V. (2002). Fondamenti della Rappresentazione Architettonica. Bologna: Società Ed. Esculapio.

Wallner, J., Pottmann, H. (2011). Geometric computing for freeform architecture. In Journal of Mathematics in Industry, Vol. 1, No. 4, pp. 1-18.

Published

2020-12-30

How to Cite

[1]
F. Di Paola and P. Pedone, “Catoptric Anamorphosis on Free-Form Reflective Surfaces”, diségno, no. 7, pp. 189-200, Dec. 2020.

Issue

Section

For communicating the complexity of images

Most read articles by the same author(s)