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Introduction

In the ancient world, and therefore well before the codi-
fication of the double orthogonal projection method 
developed by Gaspard Monge [Monge 1799], it was pos-
sible to represent three-dimensional space as faithfully 
as methods of a projective nature allow today. These 
representations, while not being documented by means 
of graphics, are in fact documented thanks to the descrip-
tions obtained from texts, such as that of the Conics of 
Apollonius of Perga.
The purpose of this short essay is to demonstrate, with 
an example, how these accurate descriptions of plane sec-
tions of solid figures, executed in such a way as to pre-
serve the true shape of the elements, are able to allow the 
reconstruction in space of the architecture of geometric 
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shapes and relationships and to perform verifications by 
means of graphic calculation. 
Proposition 13 in Book I of the Conics provides a good ex-
ample of this ancient method, which has been passed on 
through the centuries leaving deep traces even today in the 
pages of modern stereotomy. The two-dimensional figures, 
linked together by an artifice different, but no less effective, 
from the use of lines connecting projections of the same 
point, were intended as a three-dimensional model and ide-
ally reassembled in space, and we can imagine them as pag-
es of a pop-up book. This usage is suggested, for example, 
by the term “subiacens” used in the last propositions of Book 
I to denote the plane section on which the complex edifice 
of the geometry of the cone and its curves is constructed.
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Finally, it must be noted that if the editions of Apollonius’s 
treatise, like those of other works dealing with forms gener-
ated in three-dimensional space, had contained more faith-
ful illustrations, these would benefit, and greatly, the reading 
of the text as well as its comprehension. These illustrations 
should not merely give a vague idea of the configurations 
imagined by the author, but could be used as testimony to 
a way of thinking and doing geometry, and also as tools for 
verifying relationships and operational practices.
Those who deal with Descriptive Geometry are inevita-
bly led to study conic sections, not only because these 
curves arise whenever a plane “meets” [1] a cone or a 
cylinder, but also because they generate and are gener-
ated by surfaces such as the sphere, the ellipsoid, the hy-
perboloid, the paraboloid, and the hyperbolic paraboloid, 
all of which are of extreme interest to the theory as well 
as to the applications of this science.
Germinal Pierre Dandelin and his friend Adolphe Quete-
let devised a simple construction that makes it possible to 
demonstrate how the section of a right circular cone is a 
parabola, a hyperbola, or an ellipse, when certain proper-
ties of these curves are given as known, or to prove the 
properties themselves by recognizing, in the plane section 

Fig. 1. Left: the Dandelin-Quetelet construction, for the cases of the parabola 
and the ellipse, as it appears for the first time in the memoir presented by 
Germinal Pierre Dandelin to the Belgian Academy in 1822.
Right: the same construction for the case of the hyperbola, illustrated by 
David Hilbert about 100 years later.

Fig. 2. Detail of the supplementary table (A) of the second edition of 
Jean-Nicholas Pierre Hachette’s Traité de Géométrie descriptive [1828], 
where Dandelin’s theorem was first proposed in a course on Descriptive 
Geometry. The representation of the sectioned cone and of the two spheres 
inscribed within it, to study the case of the ellipse, is very similar to that of 
Dandelin. However, Hachette also denotes, by the symbol T, the projection of 
the line of intersection of the plane of section with the plane that contains 
the circle of contact of one of the spheres with the cone and identifies, in 
this line, one of the two directrices of the curve. Hachette recalls that this 
additional property of Dandelin’s “architecture” was pointed out to him 
by Mr. Blanchet, adjunct professor at the Royal Colleges of Paris, in 1826 
[Hachette 1828, pp. 51, 52, 74]. 

of a cone, a parabola, a hyperbola or an ellipse, as the 
case may be [2]. And this famous theorem, at least since 
David Hilbert used it in his Intuitive Geometry [Hilbert, 
Cohn-Vossen 1972, pp. 12-19], is an essential teaching tool 
(figs. 1, 2) [3].
But what was the structure that allowed Apollonius of 
Perga [4] to define conics as sections of an oblique or, as 
we say today, quadric cone, and not a right circular cone 
as in the abovementioned theorem?
In the Dandelin-Quetelet theorem [Dandelin 1822], the 
image, whether drawn or mental, plays an essential role: 
it makes manifest the abstract reasoning that proves the 
theorem. And if the image can do so much, in that theo-
rem, it is because, thanks to Descriptive Geometry, that 
solid construction can be projected in the pages of a book 
and can provide, to those who wish to reproduce it, the 
tool for a quasi-experimental verification.
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Fig. 3. Synthesis of the archetypal model described by Apollonius: against the 
background of the nomogram that allows the latus rectum to be calculated 
graphically, the planes of the axial triangle and of the section ellipse open 
up, as in the pages of a pop-up book, capable of evoking the mental image 
of the cone represented here in transparency. 

In other words, the image is, in itself, an existential proof 
[5], even if it does not have the force of a logical dem-
onstration. The image, moreover, has a heuristic value: it 
helps to ‘find’ the truth, it suggests the truth, and there-
fore hints at what the thinking, between intuitions and 
deductions, of its inventor might have been.
So, if what I have said can hold for the nineteenth-century 
Dandelin-Quetelet theorem, why should it not hold for 
Apollonius’s theorems? There is only one not small differ-
ence between the two ways of thinking in geometry that 
lies, precisely, in the capacity to represent it.
This is because, in the early nineteenth century, there was 
total control of three-dimensional forms, thanks to the 
contribution of Gaspard Monge and of those who pre-
ceded him in the modern age, while little or nothing is 
known of scientific representation in the time of Apolloni-
us. In fact, all that remains of the graphic models from that 
remote time are the engravings on the stone of ancient 
building sites, which are fragments of orthographic pro-
jections, as in the case of the tympanum of the Pantheon 
that is seen in Rome on the pavement in front of the Mau-
soleum of Augustus, or nomograms, such as those on the 
Temple of Apollo at Didyma [6].

The drawing of space in Book I of the Conics

The treatise on conics not only consists of a set of logi-
cal deductions capable of textually describing the prop-
erties of the plane sections of the cone, but also de-
scribes, just as accurately, very elaborate geometrical 
structures that are functional to these deductions [7]. 
To define the ellipse, the parabola, and the hyperbola in 
Propositions 11, 12, and 13 of Book I, Apollonius associ-
ates the double-napped oblique cone, which he consid-
ers for this purpose, with four planes: one as the base of 
the cone, a second that intersects it passing through the 
vertex, a third that cuts the cone and supports the con-
ic section considered and a fourth, parallel to the base. 
Within these planes, there are circumferences and line 
segments all related to each other by relationships de-
duced from each other through logical steps that recall 
various theorems of Euclid. As a whole, these figures 
and their geometric relationships constitute a model of 
the cone and its section (fig. 3) [8].
Paul Ver Eecke observes that reading these propositions 
is “quite arduous” [Apollonius Pergæi 1923, p. XIII] [9] 

and many attempts have been made to transpose the 
reasoning into terms more accessible to us, either by 
using modern symbolic notation or through metaphors 
[Flaumenhaft 2013, pp. XIII-XXX]. But a faithful graphic 
representation is the most direct way to enter into the 
logic and thought of Apollonius.
Following the original text to the letter, this model con-
sists of three drawings:
- the first is the “axial triangle” [10], described in points 

3 and 5 of the Definitions as a section of the cone with 
a plane passing through the vertex and through the 
center of the circular section that forms its base. This 
triangle is represented in true shape and can evoke 
the idea of a solid finite cone, as in Definition 2 [Apol-
lonius Pergæi 1891, p. 7] [11]. The drawing is com-
pleted by the intersection of the axial triangle with 
the plane of the section that generates the conic (fig. 
4);

- the second drawing is a nomogram [Cassinis 
1928], which Apollonius def ines with a relation 
between elements belonging to the axial triangle 
and two line segments belonging to the plane of 
the conic section: the latus transversum [12], that 
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Fig. 4. The first of the drawings described in Proposition 13: the orthographic 
projection of the cone. Note that the plane that the axial triangle belongs 
to does not coincide with the apparent contour of the cone with respect to 
the direction perpendicular to that plane. Which confirms the non-projective 
character of this image. 

Fig. 5. The second drawing: a nomogram which allows us to calculate the 
length of the latus rectum from the segments that are measured on the 
axial triangle: AK, KB and KG. 

is, the diameter (Def inition 4), and the latus rectum 
[Apollonius Pergæi 1891, p. 43], whose length can 
be calculated graphically, thanks precisely to the 
nomogram (f ig. 5);

- finally, the third drawing is the true shape of the conic, 
which can be drawn thanks to the diameter and the 
latus rectum after having measured its length (fig. 6).

In this short essay, it is not possible to examine all the 
three-dimensional graphical constructions described 
by Apollonius in Book I of the Conics; we will, therefore, 
limit ourselves to the construction of the conic in the 
case in which the cutting plane meets two sides of the 
axial triangle and, therefore, all the generatrices of the 
cone, which is the case of the ellipse, and which, in my 
opinion, is also the simplest. This examination will be 
conducted from a particular point of view, that of the 
architect who admires a building through its represen-
tation, as though it were a project.

The drawing of the cone and the ellipse as geometric locus

Proposition 13 begins with a discursive description of the 
cone and of the relationships that relate it to its section. 
The text between quotation marks (“…”) is the origi-
nal text; I have added, between square brackets ([…]), 
the letters that allow us to reconnect the text with the 
drawing. Apollonius does not do so, which demon-
strates the literary nature of this description. We are in 
the context of an ekphrasis (f igs. 4, 5) [13].
“If a cone is cut by a plane [ABG] through its axis, 
and also cut by another plane [EZH] meeting both 
sides [AB and AG] of this axial triangle (f ig. 4), but is 
neither parallel to the base of the cone nor parallel to 
the opposite [section] [14]; and if the plane the base 
of the cone belongs to and the cutting plane meet in 
a straight line [ZH] perpendicular to the base [BG] 
of the axial triangle or to it continued [15], then any 
straight line [LM] drawn from the conic section to the 
diameter of the same [ED], so that it is parallel to the 
intersection [ZH] of the two planes [16], squared, will 
be equivalent to some rectangle [EMXO], applied to 
a straight line [ET ] [17] to which the diameter [ED] of 
the section has the same ratio as the square of the 
segment [AK ] drawn, parallel to the diameter, from 
the cone’s ver tex to the triangle’s base, with respect 
to the rectangle contained between the segments [KB 
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Fig. 6. The third drawing described in the enunciation of Proposition 13. The 
length of the diameter ED is obtained from the first drawing. The length of 
the latus rectum ET is calculated graphically by means of the nomogram 
(fig. 5). By varying the position of the point M on the diameter ED so that 
the square of LM and the rectangle EX are equivalent, the point L describes 
the ellipse. The segment EO will always be smaller than the latus rectum 
ET, which therefore assumes the role of a parameter. And the segment OT 
is what the parameter lacks to reach the length of ET. ‘Lack’ is indeed, in 
Greek, the name of the ellipse. 

Fig. 7. In this drawing, the cutting plane, which contains the latus rectum ET, 
has been superimposed on the axial triangle, leaving the position of the latus 
transversum ED unchanged. Here the colors highlight the corresponding 
elements in the relation (2). 

(1)

(2)

and KG] cut off on the base of the triangle by the 
aforementioned segment” [Apollonius Pergaei 1891, 
pp. 48, 49, translation by the author] (f ig. 6).
Here the reading is particularly difficult precisely because 
ekphrasis lends itself well to describing shapes, but is not 
suitable for talking about relationships between geomet-
ric figures. Summarily, Apollonius, referring to the two 
drawings above, states that (fig. 6):

LM2 = (EM × MX)

and that (fig. 5):

ED : ET = AK2 : (KB × KG)

an expression that establishes the length of the latus 
rectum ET in relation to the axial triangle ABG (f ig. 7). 
It is now a matter of tying together the two previous 

relations, thus the enunciation goes on to define the 
rectangle (EMXO) in relation to the latus rectum ET (f ig. 
6): “And this rectangle applied to the latus rectum [ET] 
will have, as its breadth, the segment [EM] cut off on the 
diameter beginning from the section’s vertex [E] to the 
point [M], in which the diameter is cut by the straight 
line [LM] drawn from the section to the diameter, while 
its area [EMNT] will be diminished by a figure [OXNT] 
similar and similarly situated to the rectangle contained 
by the diameter and the latus rectum. […] Let such a 
section be called an ellipse” (fig. 6). 
Therefore, as we shall see (fig. 8), the ellipse generated 
by that cutting plane can be drawn by arbitrarily choos-
ing any point M of the diameter to then construct the 
geometric locus described by the relation (1).
At this point, all that remains is to graphically calculate the 
length of the latus rectum by means of the relation (2), in 
which all quantities, except for the unknown ET, can be 
measured on the drawing of the axial triangle (fig. 4) [18].
The relation (2) is given as true, a priori. Its validity is 
proven in the subsequent demonstration, which also 
justif ies the relation (1).
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The nomogram that measures the latus rectum

The demonstration is developed in a dozen steps, for which 
I refer to the original text [Apollonius Pergaei 1891, pp. 48-
53] [19], since what we are interested in here is the three-di-
mensional model as a whole, evoked by the drawings pres-
ent in figures 4 and 8 connected by the nomogram in figure 
5, which links the orthographic projection of the cone to the 
true shape of the section by means of the latus rectum ET.
The correspondence between the equation (2) and the draw-
ing in figure 5 is direct: assuming that the yellow rectangle GS 
[20] and the red square AK2 are equivalent by construction 
(see Note 18), the yellow rectangle is to the blue rectangle as 
the diameter ED is to the latus rectum ET. Therefore:
1. on the base of the axial triangle (fig. 4), the line seg-

ments KB and KG are measured, and a rectangle (in 
blue in fig. 5) is constructed, in which the two sides 
are equal in length to the abovementioned segments;

2. a segment KH equal in length to KG is marked on KB;
3. a segment KA, perpendicular to KB and equal in 

length to AK, is raised on K;
4. the circumference that has its center on the prolongation 

of KB and passes through H and A is constructed. This 
circumference cuts the prolongation of KB in S, and thus 

the rectangle having KG and KS as its sides has an area 
equal to that of the square of AK. In fact [Euclid 1970, VI, 
13, p. 379], AK is the mean proportional between HK, 
which is equal to KG by construction, and KS, so that:

KG : AK = AK : KS

 And that is:

AK2 = KG × KS

Therefore, to construct the latus rectum ET it is only nec-
essary to find a line segment that satisfies the proportion:

ED : ET = KS : KB

In fact, rectangles of the same height are to one another 
as their bases [Euclid 1970, VI, 1, pp. 361-363], and thus 
the base KS of the yellow rectangle, which is equivalent 
to the red square (AK2), is to the base of the blue rect-
angle KB, as the diameter ED is to the latus rectum ET.
It will suffice to put ED in relation with KS, for example, 
by constructing any triangle (such as BSV in fig. 5) and then 
cutting it with a straight line parallel to BS, so that the re-
sulting segments ET, ED, have the desired relationships.
Having obtained the latus rectum ET as above, one can gen-
erate the curve on the cutting plane in true shape (fig. 8).

The drawing of the ellipse

1. The right triangle EDT, which has the diameter ED and 
the latus rectum ET as its catheti, is constructed;

2. any point M is chosen on the diameter ED and MN is 
drawn through M, parallel to ET;

3. this straight line meets the hypotenuse of EDT at point X;
4. with a compass, MX is marked on the diameter as MF;
5. the semicircle whose diameter is EF is constructed 

and cuts the straight line MN at point H;
6. the chord conjugate to the diameter ED which is par-

allel to the intersection ZH of the cutting plane with 
the base of the cone, is drawn through point M;

7. with a compass, MH is marked on the abovementioned 
chord as ML.

8. L is a point of the ellipse, in fact:

MH2 = EM × MF

Fig. 8. The construction of the ellipse given the diameter (latus transversum) 
ED and the latus rectum ET.
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 But given that MH = ML and MF = MX

LM2 = EM × MX

Obviously, varying the choice of M, all the points on the 
curve are obtained (fig. 8).

Conclusions on the purpose of this study

I realize that the fragmentary reading of the text by Apol-
lonius I have referred to, which has, furthermore, been 
stripped of all or most of the logical steps of the demon-
strations, may appear detrimental to the author’s great-
ness and therefore unacceptable. But it must be remem-
bered that this study does not look at mathematics, but 
at architecture and drawing.
How did the ancients realize the grandiose buildings they 
have left us, intended as constructions of stone, but also 
understood as constructions of thought, without the 
support of scientific representation as we know it today?
Hinting at a possible answer is the purpose of this study 
to show that: 
- when Apollonius of Perga deals with solid figures the 

text can be read as the ekphrasis of a three-dimen-
sional model capable of representing space not only 
allusively but with operational capabilities; this analysis 
can be extended to many other passages by the same 
and perhaps other authors;

- in the case of the difficult propositions of Book I of Apol-
lonius’s Conics, this reconstruction can provide the reader 

Notes

[1] As Girard Desargues said [Desargues 1639].

[2] The genesis of this famous theorem is narrated by Adolphe Quetelet 
[Quetelet 1867, pp. 144-147] and shows how tortuous the road to a 
result of such limpid simplicity can be. A result that, although being the 
result of the collaboration with Quetelet, was published by Germinal 
Pierre Dandelin in 1822 and earned him admission to the Belgian Acad-
emy of Sciences.

[3] The Italian edition of Anschauliche Geometrie (1932) was published in 
the Universale scientifica Boringhieri in 1972. Quetelet himself, noting the 
importance of this theorem, observes that the first to make use of it was 
Jean-Nicholas Pierre Hachette, in 1828 [Quetelet 1867, p. 145] (fig. 2), 
precisely in the second edition of his treatise on Descriptive Geometry 
[Hachette 1828, pp. 51-53], the first being published in 1822, and that 

Théodore Olivier, in 1847, had devoted a special study to it, which is in-
cluded in the complements of his treatise [Olivier 1847, pp. V-VIII].

[4] He lived from 262 to 190 B.C. [Boyer 1980, p. 166], and Gino Loria 
writes of him, “So little is known of his life that up to now it has not been 
possible to decide whether or not he is to be identified with a contem-
porary astronomer of the same name. A later commentator describes 
him to us vain and bumptious, in strident contrast to Euclid, who was 
modest and always ready to acknowledge the merits of others. Of the 
improvements he suggested to the Elements of the great Alexandrian, we 
know little more than their existence; of his work on irrational quantities, 
a supplement to Euclid’s Book X, we know only what an Arabic writer 
tells us about it; so of his work on the problem of constructing a circle 
touching three others situated in the same plane (a matter still designated 
by the name of ‘The Problem of Apollonius’) we only know the general 

with a map for his orientation, moving from an enuncia-
tion to a demonstration and then to the final outcome 
as one moves from a plan to a section when studying a 
representation of architecture, and then reconnecting the 
drawings in the space of the mind and finally in reality.

It is well known that mathematicians have an innate dif-
ficulty in recognizing the role of graphic models in the 
elaboration of geometric thought, but there are also oth-
er authoritative opinions, and among all of them, Lucio 
Russo’s is worth quoting in full: “Today we consider as 
independent three activities that were inseparably con-
nected in Hellenistic mathematical practice: deductive 
reasoning, calculus and drawing” [Russo 2023, p. 59] [21].
And speaking of independence of activities and, I would 
add, of disciplines, it should also be noted how the 
scholastic habit of naming courses as being of ‘analysis’, 
of ‘geometry’, of ‘drawing’, and so on, has induced a 
separation that not only does not exist in reality, but is 
detrimental. If we look at the History of Representation, 
today we find Histories of Perspective, Drawing, Geom-
etry and many other disciplines all separated from each 
other, whereas they are interdependent. On the other 
hand, I believe that Christian Wiener [Wiener 1884, pp. 
5-61] was ahead of us and on the right track when, in 
1884 he outlined a short history that moves with con-
tinuity from the perspective of the ancients to optics, 
topography, descriptive and projective geometry, picto-
rial and three-dimensional perspective and photogram-
metry, and finally to the theory of chiaroscuro. A path 
that, as we know, certainly did not end with the advent 
of computer techniques.
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plan” [Loria 1930, p. 17]. The most important commentator among those 
mentioned by Loria is Pappus of Alexandria [Pappo 1560].

[5] Here I use the same adjective proposed by Gino Loria in his small 
volume on Metodi matematici (Mathematical Methods) [Loria 1919, pp. 
77-83] to define this potentiality of geometric construction in general. 

[6] On this subject there is an extensive multidisciplinary bibliography al-
ready cited in José Antonio Ruiz de la Rosa’s essay [Ruiz de la Rosa 1987]. 
On the temple of Apollo at Didima, see Lothar Haselberger [Haselberger 
1985]. The layout of the tympanum of the Pantheon has also been studied 
by Carlo Inglese [Inglese 2000, 2013]. 

[7] Apollonius’ text is presented as an ekphrasis not unlike literary 
ones. Among the most famous examples of ekphrases there is Pliny the 
Younger’s description of his Villa Laurentina, while writing to his friend 
Clusinius Gallus [Pliny 1973, pp. 314-329]. The reconstruction of the villa 
attracted the interest of many designers and scholars, from Vincenzo 
Scamozzi [Scamozzi 1615, pp. 265-268] to Karl Friedrich Schinkel (1833-
1835) [1781-1841. Schinkel… 1982, pp. 158-161] to the competition 
announced in 1982 by the Institut Français d’Architecture [Porphyrios 
1983, pp. 2-7]. A further and even more pertinent example is Leon 
Battista Alberti’s Descriptio Urbis Romae [Alberti 2005], where the draw-
ing is replaced by an alphanumeric code, just as in texts on geometry. 
The Conics originally comprised eight books, written in Greek. The first 
four have come down to us in the original language. The next three, 
from Book V to Book VII, have come down to us in an Arabic transla-
tion. The eighth book has been lost. The seven surviving books have all 
been translated into Latin, and almost all of these editions are illustrated. 
We recall the main editions, with particular reference to the first four 
Books. See Memmo 1537 [Apollonius Pergæi 1537]; Commandino 1566 
[Apollonius Pergæi 1566]; Barrow 1675 [Apollonius Pergæi 1675]; Hal-
ley 1710 [Apollonius Pergæi 1710]. In addition, among the more recent 
editions: the critical edition by Heiberg [Apollonius Pergæi 1891; 1893]; 
the slightly abbreviated one by Thomas Little Heath [Apollonius of Perga 
1896]; the excellent one by Paul Ver Eecke [Apollonius Pergæi 1923]; 
and, finally, the one by Robert Catesby Taliaferro and Micheal N. Fried 
[Apollonius of Perga 2013].

[8] To illustrate this paper, I elaborated the figures on the computer, as I have 
done for years now. But despite many attempts to alleviate the coldness of 
these drawings, I could not create images capable, in some way, of evoking 
the relationship between logic and drawing of which Lucio Russo speaks at 
length in his study of Greek scientific thought [Russo 2023]. In the end, I pre-
ferred to use a ruler and compass, and also having to distinguish some areas 
with colors, I imitated the graphics of Oliver Byrne [Euclid 1847] to whom 
homage must be paid for having translated into vivid images a luminous 
thought that is usually mortified by skeletal line drawings. 

[9] “Les propositions XI, XII et XIII, dont la lecture est assez ardue, sont les 
plus importantes du premier livre”: Paul Ver Eecke in Apollonius Pergæi 
1923, p. XIII] (“The propositions 11, 12, and 13, whose reading is rather 
difficult, are the most important of the first book”). But already in the edi-
tion edited by Jesuit Father Claude Richard in 1655 we read, in one of the 
introductory chapters, entitled Warning to the Reader who is a Scholar of 
Geometry: “Section XIX – If and why the Conics of Apollonius are difficult. 
If Pappus of Alexandria, who excelled in the matters of geometry judged 
that, in order to understand the Conics, all his lemmas were necessary, in 
addition to the ninety by Apollonius himself, will they not be difficult?” 

[Apollonius Pergaei 1655, Sectio XIX. An et cur difficilia sint Apollonij Conica, 
without numbered pages, translated from Latin by the author]. 

[10] According to Apollonius’s Definition I, the axis is the straight line pass-
ing through the vertex and the center of the circular base of the cone. 
Care should be taken not to confuse this segment with the straight line 
that belongs to two of the planes of symmetry of the cone and is perpen-
dicular to the third, as in today’s usage. The axis of Apollonius is, in general, 
distinct from the axis of symmetry: the two lines coincide only if the 
cone is straight. The term “axial triangle” comes from the original Greek 
“ἄξονος τριγώνον”, which others translate [in Italian] as “triangolo per 
l’asse,” from Johan Ludvig Heiberg’s Latin edition “triangulum per axem”. 
In the original text, in Greek, the definitions are not numbered; Heiberg 
distinguished them in Latin with the numbers 1 to 8. Here, for clarity, I 
have used Roman numerals.

[11] Note that, as reiterated in the caption for figure 4, the axial triangle 
does not, in general, coincide with the apparent contour of the cone itself 
with respect to the normal direction; this condition occurs only if the 
axial triangle belongs to a plane perpendicular to the base. Hence the 
non-projective nature of this image. 

[12] In the case of the parabola, whose diameter has infinite length, the 
latus transversum is replaced by the distance between the vertex of the 
curve (defined in Proposition 4) and the vertex of the cone. 

[13] It is surprising to note that there is no Italian translation of Apollonius 
of Pergas’s Conics, a lacuna that is not so painful because of the language 
as because of the lack of a suitable iconographic apparatus. In fact, histori-
cal editions, as well as others, are all lacking in this respect. The translation 
into Italian of the reported passages is by the author of this paper.

[14] Every quadric cone, whatever directrix is used to generate it and, 
that is, a circle, ellipse, parabola or hyperbola, possesses two infinite arrays 
of circular sections. Apollonius is aware of this and constructs an opposite 
section in Proposition 5.

[15] The required condition of perpendicularity between the two inter-
secting lines of the base of the cone with the cutting planes, that of the 
triangle and that of the ellipse, might appear to be a constraint limiting 
the generality of the construction, but this is not the case, because what 
determines the shape and size of the ellipse is only the cutting plane, and 
therefore the axial triangle can be freely chosen. 

[16] That is, the cutting plane and the base of the cone. 

[17] That is, the parameter or latus rectum.

[18] Eutocius, in his commentary on Proposition 11 of Book I [Apollonius 
Pergæi 1893, p. 217] explains how one can graphically represent the equa-
tion BG2 : (BA × AG) = TZ : ZA which is analogous to the one we are in-
terested in. And this concern of his is confirmed in the hypothesis that the 
drawing used by mathematicians of the time had operational significance. 
Adapting Eutocius’s writing to the relations concerning the ellipse, namely 
to Proposition 13, we obtain the following reasoning (fig. 5): “Let  AK2 : (KG 
× KB) = ED : ET and what has been said is shown to be true, until proven 
otherwise. Let the rectangle (KG × KB) in blue in the figure] be [drawn]. 
Let us apply to the side [KG] a rectangle of area equivalent to the square 
of side [AK] [in red] and let [KS] be the width of that rectangle [in yellow].” 
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Let us interrupt, for a moment, our reading of Eutocius to explain his 
argument in detail. In the scientific jargon of the time “apply to” stands for 
“build on”; therefore: let us build on that segment a rectangle whose height 
is KG, like the rectangle (KG × KB), and which is equivalent to the square 
of side AK, that is, has the same area. This rectangle will, therefore, have KG 
as its height and a segment KS, as its base, the length of which must be 
calculated graphically. The two rectangles BKG and SKG, thus generated, 
have the same height and therefore their bases have the same relationship 
as their areas [Euclid 1970, VI, 1, p. 361]: (KG × KS) : (KG × KB) = KS : KB. 
Recalling, now, that AK2 is equivalent to (KG × KS) by construction, we may 
write that: AK2 : (KG × KB) = KS : KB, and since AK2 : (KG × KB) = ED : ET 
it follows that KS : KB = ED : ET. This relationship simply indicates that the 
segment ET, that is, the latus rectum, is to the diameter ED as KB is to KS. 
Therefore, Eutocius concludes in this way: “Let KS : KB = ED : ET and thus 
we have obtained what we wanted and in fact, since KS : KB = ED : ET, it 

will be, on the other hand, [Euclid 1970, V, 7 coroll., p. 318] SG : GB = ED : 
ET, and it is, also, [Euclide 1970, VI, 1, p. 361] KS : KB = SG : GB = AK2 : (BK 
× KG) [as was to be shown or demonstrated]”.

[19] The Italian translation of the first thirteen propositions, annotated 
and illustrated as in this essay, is available at <https://www.migliari.it> (ac-
cessed 15 May 2024). 

[20] When Apollonius has to indicate a rectangle he does not use four 
letters, but only the two he associates with the vertices of a diagonal.

[21] The pages that Russo devotes to drawing all deserve careful 
reading because they make clear what importance drawing had in the 
formation of Hellenistic geometric thought and how it assumed the 
value of an existential demonstration [Loria 1919, pp. 77-83].
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