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The Masters of Vision. 
From Visionary Science to Visual Suggestions

Domenico Mediati

The Euclidean dogma

Isaac Newton, in the 17th century, gave a decisive 
contribution to the foundations of classical physics. His 
studies hypothesized space and time as absolute entities. 
His statements were part of the undisputed dominance 
of the geometric principles expressed by Euclid in the 
Elements.
However, Euclidean geometry has an Achilles’ heel. Al-
though indirectly, the V postulate states that if two co-
planar lines cut by a transversal form, on the same side, 
two angles whose sum is equal to a flat angle, will not 
meet and will be, therefore, parallel. This statement, 
however, does not have the qualities of ‘demonstrabil-
ity’ and ‘evidence’ that, at that time, were necessary for 
it to be considered as a valid postulate. Euclid himself 

was aware of this, to the point that he did not use it for 
the demonstration of the first 28 propositions of the 
Elements. He only used it for one case. This awareness 
led him to consider the statement of the parallel lines 
as a theorem, although he never managed to find a valid 
demonstration. Following the failure of these attempts, 
he decided to reinsert it among the postulates [Agazzi, 
Palladino 1978, p. 48]. In the following centuries, there 
will be many attempts to exclude this proposition from 
the postulates, trying to demonstrate it as a theorem, 
but all will be unsuccessful.
Among the most ancient studies, we remember Proclus 
(5th century), who was firmly persuaded that “in the ac-
quisition of geometric propositions, no weight should be 
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given to intuitive representations which are purely prob-
able” [Proclus cited in Agazzi, Palladino 1978, p. 52]. His 
attempt failed when he introduced a hitherto unknown 
hypothesis: that the distance between two straight lines 
was finite. In fact, it was a new postulate that would make 
the demonstrative system collapse.
The attempt of Saccheri [1733], about XIII centuries later, 
will not obtain better results, but will be fruitful for future 
studies. Although unknowingly, he will pave the way for the 
birth of non-Euclidean geometry.
Saccheri proposed a demonstration a contrariis [1], based 
on ‘absolute geometry’ [2], which considered admissible 
two opposite hypotheses, implicitly excluded by Euclid: 
that for an external point to a straight line several parallels 
pass and, on the contrary, that none pass.
The demonstration failed because it was not able to 
demonstrate that the hypotheses admitted by absurd-
ity were not true, but just this failure will determine its 
future success. “It became then clear –notes Sgrosso– 
that this proposition was to be considered effectively a 
postulate, assuming it together with the others, the Eu-
clidean geometry was born, but assuming the excluded 
hypotheses, two different geometric theories were born, 
as valid as the first one” [Sgrosso 1986, p. 57]. These are 
the hypotheses on which some of the most enlightened 
scholars between the end of the 18th and the 19th cen-
tury will work.

From the Euclid ‘failure’ to the ‘visionary geometries’

Since he was a student, Gauss also tried to prove the 
V postulate of Euclid. In the beginning, he considered it 
as a theorem but soon he was convinced that it was in-
demonstrable and oriented his studies towards a system 
based on its negation. Starting from 1817 he worked on 
the hypothesis that assumes the existence of several lines 
passing through a point and parallel to an assigned line. 
He, with greater awareness, followed the path traced by 
Saccheri almost a century earlier. This opened the field 
to the hypothesis of a geometry very different from the 
one known until then, which Gauss at first called ‘anti-
Euclidean’, then ‘astral’ and finally ‘non-Euclidean’.
He never published the results of his studies. The scientific 
thought of his time was dominated by the figure of Kant, 
who considered Euclidean geometry as an inescapable 
necessity for thought. In the Critique of Pure Reason, pub-

lished in 1781, the German philosopher defined space 
and time as priori forms [Kant 2000]. Thus, geometry was 
an absolute construction, based on indubitable principles 
[Mangione 1971, p. 182]. This cultural context decisively 
discouraged any position that questioned the Euclidean 
foundation of space. “I will not decide for a long time 
yet –wrote Gauss in one of his epistolaries– to elaborate 
for a publication of my very extensive researches on the 
topic, and this perhaps will never happen during my life, 
because I fear the shrieks of the Boeotians” [Agazzi, Pal-
ladino p. 75].
A few decades later, the studies of Hungarian Bolyai and 
Russian Lobačevskij will challenge the scientific community. 
They will propose concepts decidedly ‘visionary’ that, un-
beknown to each other, will follow the analogous theories 
of Gauss. Bolyai and Lobačevskij demonstrated that for a 
point outside a line it is possible to draw several parallel 
ones to that given. This subversive hypothesis will open the 
field to a new geometry that Lobačevskij will call “imagi-
nary” [3].
Riemann [4] moved in a similarly visionary direction. In 
1851 Gauss put him on this path, assigning him the theme 
on which he would hold the dissertation for the achieve-
ment of the title Privatdozent [5]. Riemann also denied 
the Euclidean postulate but took an opposite route. He 
hypothesized an unlimited but not infinite space: “and it 
is precisely on the hypothesis of a finite space –says And-
rea Giordano– that elliptic geometry was born, specifically 
highlighting the new idea of ‘line’, which here is precisely 
closed and finite. […] two lines (therefore all lines) of a 
plane meet, and consequently for a point of the plane no 
parallel to a given line passes” [De Rosa, Sgrosso, Giordano 
2002, p. 218].
These studies will lead him to hypothesize the existence 
of a multidimensional reality. It is a further piece in the 
mosaic of the new non-Euclidean geometries that will 
be defined around the end of the 19th century. The Eu-
clidean principles on which, for more than two millennia, 
the knowledge of reality were based are now definitely 
put in crisis by scientific concepts definitely visionary. 
This will push towards the search for new theoretical 
and scientific principles, able to support a new interpre-
tation of reality.
The studies of Faraday and Maxwell on the propagation of 
electromagnetic waves will be decisive. These researches 
will definitely put the classical physics of Newton and his 
concepts of absolute space and time in crisis. The weak-
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ness lies in its essential foundation: to apply concepts of 
Euclidean geometry to a space that could be not such. The 
time was finally ripe for a further leap that will radically 
change the conception of space.
In 1905, Einstein published his theory of Special Relativity. 
He stated that space and time should be considered in a 
coordinated way. Time thus became a fourth variable, to 
be added to the three spatial dimensions adopted until 
then. Eleven years later he published a further develop-
ment of this theory that he called General Relativity [Ein-
stein 1916]. He hypothesized a four-dimensional space, 
in which the space-time entity (Chronotope) is curved by 
the presence of a mass and the gravitational field that it 
generates.
This will radically change the conception of space, push-
ing it towards a metageometric dimension. If in the pres-
ence of a gravitational field space-time is curved, then it 
can no longer be considered Euclidean. The theories on 
non-linear geometries of Gauss, Bolyai, Lobačevskij and 
Riemann are confirmed by the most advanced concep-
tions of physical space.
Therefore, Euclidean geometry is only one of the pos-
sible models of interpretation of reality. It is still valid for 
the world that can be experienced directly, but it was 
not the most suitable to support the new instances that 
were emerging in every field at the beginning of the 20th 
century.

Flatland

Abbott had already prepared the ground a few decades 
earlier. In 1882 he published what will become a clas-
sic of fantastic literature: Flatland: A Romance of Many 
Dimensions. He tells the story of a square, accustomed 
to living in a two-dimensional world, which discovers to 
it surprise that it belongs to a three-dimensional space 
(Spaceland). Its curiosity does not stop at this discovery 
but continues in visionary reflections, hypothesizing the 
existence of multidimensional spaces: “shall not, I say, the 
motion of a divine Cube result in a still more divine Or-
ganization with sixteen terminal points? […] And once 
there [in the four-dimensional space], shall we stay our 
upward course? In that blessed region of Four Dimen-
sions, shall we linger on the threshold of the Fifth, and 
not enter therein? […] Then, yielding to our intellectual 
onset, the gates of the Sixth Dimension shall fly open; 

Fig. 1. W. I. Stringham, regular figures of four-dimensional space [Stringham 
1880].

Fig. 2. H. P. Manning, representation of a hypercube, 1914.
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art world. However, Abbott will not provide any illustra-
tion of such an entity. The first hypothetical represen-
tations of hypersolids are by mathematician Stringham 
who, in 1880, published an essay with a contribution to 
the definition of regular figures in four-dimensional space 
[Stringham 1880] (fig. 1).
A few decades later, the mathematician Manning [1914] 
published some graphic hypotheses of a hypercube: ‘pro-
jections’ from a four-dimensional space to a Euclidean one 
(fig. 2). Such representations were the result of a math-
ematical abstraction no less visionary than Abbott’s liter-
ary descriptions. They captured the attention of artists and 
architects.
In number 5 of 1923 of De Stijl, eleven years after his death, 
the article by Poincaré Pourquoi l’espace a trois dimensions? 
was published. At the preface of the essay is the sentence: 
“The meaning of the fourth dimension for neoplasticism”. 
It was a clear declaration of interest by the founders of 
the movement: Mondrian and Van Doesburg. The latter, in 
those years, clearly expressed a line of research in that 
direction (fig. 3). Describing a project for a private house in 
1924, he wrote: “The new architecture is anti-cubic, in oth-
er words, its different spaces are not contained in a closed 
cube. On the contrary, the different cells of space (includ-
ing balcony volumes, etc.) develop eccentrically, from the 
center to the border of the cube, so that the dimensions 
of height, depth, width and time receive a new plastic ex-

after that a Seventh, and then an Eighth” [Abbott 2004, 
pp. 68-69].
A few years later, the science fiction writer Hinton will 
publish an essay about the 4th dimension in which the 
term tesseract (hypercube) appears for the first time 
[Hinton 1888].
These were undoubtedly fascinating hypotheses but, 
at the time, many must have considered them bizarre.  
Actuality, these reflections were based on a maturing 
scientific debate and were filled with a stringent scien-
tific logic. Multidimensional reality had no possibility of 
being perceived through experiential data but this did 
not exclude the possibility that it could be deduced by 
logical abstraction. As Emmer states: “the foundation of 
mathematics is in abstraction and therefore mathemat-
ics could appear far from physical reality” [Emmer 2003, 
p. 25]. Actually, logic and abstraction are sides of the 
same coin and contribute to the formulation of hypoth-
eses and new scenarios that only later will be confirmed 
by scientific data.

The hypercube and metaphysical space

Between the pages of Flatland, albeit indirectly, there is 
the first description of a hypercube, a figure that will fas-
cinate scholars and mathematicians but also inspire the 

Fig. 3. Left: T. van Doesburg, Une Nouvelle Dimension, 1925-1929. Middle and right: T. van Doesburg e C. van Eesteren, Maison particulière, 1924.
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Fig. 4. S. Dalì, Crucifixion (Corpus Hypercubus), 1954. Top: analysis of the perspective structure. Bottom: details and redraw of the crucifix. Graphic elaboration by the author.
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pression” [Van Doesburg cit. in Emmer 2003, p. 119]. Both 
the text and Van Doesburg’s drawings referred to the rep-
resentation of a hypercube even though, as Michele Em-
mer notes, he confused Flatland’s four-dimensional objects 
–four-dimensional projections of Euclidean elements– with 
Einstein’s space-time theory in which time constitutes a 
fourth dimension [Emmer 2003, p. 119].
The tesseract is an expression of scientific conceptions 
that subvert the usual empirical universe, but it also rep-
resents a link with unexplored universes that open up to 
fruitful artistic experimentation. In fact, the most visionary 
results will be expressed precisely in this field. Dalì explic-
itly showed his interest in the mixture of mystical and sci-
entific dimensions found in four-dimensional space. In his 
work Crucifixión (Corpus Hypercubus) of 1954, he painted a 
Christ placed next to a cross suspended in the void, a clear 
representation of a hypercube (fig. 4). Everything happens 
without contact, in a metaphysical context dominated by 
an obscure natural landscape, in which the floor grid pro-
vides a weak anchorage to the empirical, logical and ra-
tional world. On it Dalì projects the hypercube, drawing 
a cross between the perspective grids. The new metageo-
metric concepts, with their intrinsic need for abstraction 
and with a strong mystical and emotional character, consti-
tute a bridge between the material world and the meta-
physical dimension. Dalì’s interests in the fourth dimension 
will continue in the following years. He came into contact 
with the mathematician Banchoff, keeping abreast of sci-
entific developments regarding metageometric space. In 
1979 he returned to the subject with the painting In Search 
of the Fourth Dimension. It is a surreal context in which cita-
tions of Raphael and Perugino are overlaid with symbolic 
elements, typical of the poetics of Dalì. In the foreground 
a dodecahedron is superimposed on the opening of what 
looks like a tomb: possible symbolic connection between 
reality and metaphysical space. In the background looms 
a ‘soft clock’, symbol of an eternal time that unifies and 
connects a visionary space steeped in Renaissance knowl-
edge, Christian spirituality and pervaded by a disquieting 
mystery of oblivion.

Single-sided surfaces

De Stijl’s posthumous interest in Poincaré testifies to the 
influence that the French mathematician’s studies had on 
the artistic imagination of the 20th century.

Fig. 5. Single-sided surfaces. Left: Möbius ribbon, conformation scheme. Right: 
Kelin bottle. Graphic elaboration by the author.

Fig. 6. M. Bill, Endless ribbon, granite, 1953 (original version 1935). Baltimora 
Museum of Art.
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In 1895 he published Analysis Sitû, the volume that will 
lay the bases of topological geometry. It “has as its ob-
ject the study of geometric properties that persist even 
when shapes are subjected to such profound deforma-
tions that they lose all their metric and projective prop-
erties” [Courant, Robbins 1961, p. 353]. Such concep-
tions will open the field to very interesting visionary 
experiments.
A few years before Poincaré, in 1858, at the Académie 
des sciences in Paris, Möbius presented a long-neglected 
memoir on single-sided surfaces. In this work he de-
scribed a shape with extraordinary expressive qualities: 
the ‘Möbius strip’ [6] (fig. 5). Almost eighty years were 
to pass before this geometric intuition found an appli-
cation in modern art. In 1936, at the Milan Triennale, 
Max Bill presented the Endless ribbon (fig. 6). Unaware 
of Möbius’ studies, he believed he had found a novel 
form. It was only later that he would discover the links 
with the geometric-mathematical studies of the previ-
ous century. The Swiss artist’s interest in topology was 
not only linked to its aesthetic qualities but above all to 
the expressive-symbolic potential it offered. The analogy 
with the symbol of infinity triggers suggestions that go 
beyond mere shape. “If non-oriented topological struc-
tures existed only by vir tue of their aesthetics, then, 
despite their exactness, I could not have been satisfied 
with them. I am convinced that the foundation of their 
effectiveness lies partly in their symbolic value. They are 
models for reflection and contemplation” [Bill 1977, pp. 
23-25]. Rationality of mathematical thought and emo-
tional expressiveness merge, generating unusual geo-
metric configurations.
Vittorio Giorgini also moved in this direction. Between 
the 1960s and the 1970s he carried out some experi-
mentation on single-sided surfaces [Mediati 2008, pp. 
190-192]. His studies started from a critical point found 
in the conformation of ‘Klein bottle’ (fig. 5). In fact, it has 
a point of discontinuity in correspondence with the in-
tersection which is determined when the tube pene-
trates the bottle. In order to solve this problem, Giorgini 
introduced a variation that eliminates the intersection 
and recovers the continuity between the internal and 
external surfaces (fig. 7). The result is extremely sugges-
tive and elegant shapes, including the topological reinter-
pretation of the sphere and the torus, which in 2003 
will be sculpted in alabaster by two artists from Volterra: 
Dainelli and Marzetti.

Fig. 7. V. Giorgini, Solids by Giorgini. From top: reinterpretation of Klein bottle; 
topological reinterpretation of the sphere; topological reinterpretation of the 
torus. Graphic elaboration by the author.
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These experiences are part of an approach that pushed 
Giorgini to the continuous search for organic forms. He 
was inspired by the studies of Thompson, a biologist and 
mathematician who believed that mathematical laws and 
physics played a crucial role in determining the forms and 
structures of living organisms.
Giorgini transferred these reflections to the field of archi-
tecture, rejecting the traditional techniques derived from 
‘classical geometry’. He privileged those ‘techniques of 
nature’ capable of configuring complex systems [Giorgini 
2006, p. 34]. Therefore, Giorgini’s free forms are the re-
sult of overcoming Euclidean space and of a hybridization 
between biological processes, mathematical laws and new 
expressive research.
The audacious shapes of topological space, from Möbius, 
to Klein, to Giorgini, up to the most visionary contempo-
rary architectural designs, are the result of a reinterpreta-
tion of the concept of space and of an integration between 
art and science.
Computer graphics, techniques and new production proc-
esses allow, today, a reconnection between imagination and 
science, between theoretical and empirical space, elaborat-
ing forms that seemed unthinkable until a few decades ago. 
Scientific discoveries have radically changed the concept of 
space, giving it a topological dimension. Space is no longer 

Fig. 8. B. Ingels Group, National Library, Astana (Kazakhstan), 2009. International competition winning project. The design is inspired by the Möbius strip.

a static cage, dominated by a rigid perspective structure, 
but it becomes fluid, changeable and malleable [Imperiale 
2001].
It is in this context that contemporary ‘soft’ architectures 
come to life, as a result of a demolition of rigid Euclidean 
dogmas and that often take inspiration from the new vi-
sionary explorations in artistic and scientific fields (fig. 8).

Visionary perceptions and relative space

If empirical reality is only one of the possible realities, then 
the expressive potential of a visionary universe multiplies. 
Moreover, when the demolition of Euclidean and Newto-
nian dogmas is intertwined with an interest in perceptual 
studies, the field opens up to surprising impalpable and 
deceptive visions.
In reality, some experiments in the field of perceptual 
deceptions had been carried out since the 18th century 
by one of the most virtuous engravers. Piranesi, with the 
engravings of Carceri d’invenzione (Prisons of Invention), 
pushed the static Renaissance perspective to the extreme 
and opened the horizon to new interpretations of space. 
In the panel Capriccio di scale, arcate e capriate (1745-50) 
[7] he created a clever perspective artifice: two walls that 
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are parallel to each other are artificially connected by an 
arch that in turn appears parallel to the walls it connects 
(fig. 9). It is an obvious perceptual deception, anticipating 
the impossible objects that will be explored only in the 
following century and that will find great success in the 
second half of the twentieth century.
The studies of the Swiss crystallographer Necker are an 
example. In 1832 he drew a cube in which one of the 
posterior sides is superimposed on a front side. The result 
is a clearly unreal shape that can only exist in the ‘illusory 
space’ of the representation, a theme that will become re-
current in Escher’s engravings (fig. 10).
A little over a century later, in 1934, Swedish artist Reu-
tersvär also became interested in the theme. When he was 
only 18 years old, he drew an ‘impossible triangle’, com-
posed of a series of cubes in axonometry that overlap in 
an apparently plausible manner but in obvious contrast to 
objective reality (fig. 11). Reutersvärd suffered from per-
ceptual difficulties: dyslexia and difficulty in perceiving the 
size and distance of objects. These characteristics prob-
ably had a decisive influence on his experimentations and 
opened the field to visions that go beyond the Euclidean 
space. His research led him to create other unusual figures. 
In 1937, he drew the ‘impossible stairs’, well in advance of 
Escher and Penrose.
However, these experiments were only visionary intuitions 
without a wide following in the artistic and scientific fields. 
A decisive contribution to their success came only in 1958, 
when the British psychiatrist Lionel Penrose and his son 
Roger sent a short article to the British Journal of Psychol-
ogy, which illustrated the ‘Penrose stair’ and ‘triangle’. Two 
impossible objects that were inspired by Escher’s experi-
mentations, to which the essay referred [Penrose, Penrose 
1958, pp. 31-33]. The paper, however, did not mention Re-
utersvärd’s studies, which Roger discovered only in 1984.
In the same year that Lionel and Roger Penrose pub-
lished their essay, Escher produced the engraving Belvedere 
(1958). In an apparently marginal position is a seated figure 
handling a ‘Necker cube’ and, at his feet, he has a sheet of 
paper with a scheme in which the crucial points of the de-
ception are highlighted. Thus, Escher declares the geomet-
ric-perceptual inspiration used in the construction of the 
loggia that dominates the composition (fig. 10). As early 
as the 1940s, Escher had already created some engravings 
that reinterpreted the ‘Möbius strip’ and others that ex-
plored the potential of perceptual deceptions. Reality and 
space for Escher are expressed in a dimension of extreme 

‘relativity’ in which several worlds and perceptions inter-
sect, imprisoning the protagonists in a universe in which 
there is no longer any distinction between horizontal and 
vertical, perception and reality, finite and infinite.
The two Penroses would send their essay to Escher from 
which he would draw further inspiration. The lithograph 
Ascending and descending (1960) is a reinterpretation of 
Penrose’s staircase: two rows of hooded men traveling in 
opposite directions are imprisoned in an endless path (fig. 
12). It is an evident perspective transposition of the infinite 
path of the ‘Möbius strip’. In this engraving, topological con-
cepts, perceptual deceptions, multidimensional spaces and 
perspective alterations intertwine, defining an unreal but 
perceptually plausible space, the result of a dreamlike and, at 
the same time, apparently rational vision. It is a subject that 
will be taken up again a year later with the engraving Water-
fall (1961) in which a ‘continuous bed’ on which water flows 
replaces the steps. The perceptual deception imprisons the 
water in a perpetual flow, in which the force of gravity de-
nies itself and produces an improbable endless circuit.
Escher’s is a magical world, which finds its shape only in the 
privileged space of imagination and representation. Escher 
died in 1972 and did not have time to enjoy the many 
experimentations carried out on his works, with the help 
of computer graphics. The theme of impossible spaces and 

Fig. 9. G. B. Piranesi, Capriccio di scale, arcate e capriate. Taken from Carceri 
d’invenzione, 2nd edition, 1761, plate XIV, 415x548 mm.
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optical illusions has strong connections with the atopic 
space of the digital world. On the other hand, one of the 
first computer animations took place in the 1960s, in the 
Bell Laboratories of New Jersey, right on the ‘Penrose stair’.
In fact, the digital universe contains in itself all the ingredi-
ents of illusion: the possibility of creating unreal environ-
ments and simulating their concreteness using a math-
ematical and algorithmic structure. Once again science, 
mathematics and imagination collaborate, projecting the 
creative dimension towards new visionary expressions.

Conclusion

Art and science have a common matrix that drives the 
search for unexplored paths: a path that always moves 
the boundaries of knowledge further and further. Explor-
ing unusual hypotheses, sometimes ‘subversive’, is the only 
way that produces innovation. Man’s capacity for abstrac-
tion, that irrepressible instinct for ‘vision’, for overcoming 
the limits of appearance and the empirical world, are the 
foundation of all scientific and artistic evolution. Even in 
disciplines such as mathematics and physics, which appear 
to be firmly anchored in the experiential world, abstrac-
tion is the seed of every discovery: nothing can happen 
without imagination.
Between the 19th and 20th centuries, in a period of radical 
mutation, art and science find a common visionary ambi-
tion. The demolition of classical physics and Euclidean dog-
mas, the formulation of new multidimensional hypotheses, 
the theory of relativity, coexist with changes in the field of 
art. Perspective, which had dominated the world of repre-
sentation since the Renaissance, is clearly challenged by the 
new artistic avant-garde. The demolition of the perspective 
universe, last anchorage to a Euclidean world, opens the 
field to visionary experimentations that, together with the 
new scientific instances define a new Weltanschauung.
A major contribution to the demolition of the old dogmas 
also comes from the use of the computer which, in recent 
decades, has facilitated the emergence of new formal re-
search in both the field of art and architecture.
These paths are often intertwined, sometimes one an-
ticipates the other, but together they contribute to open 
doors to intuitions, sometimes premonitory, that will mark 
the evolution of thought and art and will direct the per-
ennial research of relationship between man and reality 
towards innovative and suggestive visions.

Fig. 10. Top: construction diagram of a Necker cube. Bottom: M. C. Escher, 
Belvedere, 1958. Lithograph, 461x295 mm. Detail.

Fig. 11. O. Reutersvärd, Impossible objects, 1934 et seq. Top: Stamps issued in 
1982 by the Swedish government to celebrate Reutersvärd’s work.
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Fig. 12. M.C. Escher, Ascending and Descending, 1960, lithograph, 355x285 mm. Left: detail and analysis of the perspective structure. Right: graphic analysis with 
reference to Penrose stair. Graphic elaboration by the author.
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Notes

[1] It is a procedure that allows to verify a proposition assuming as a 
starting point the negation of the same.

[2] ‘Absolute geometry’ derives from ‘Euclidean geometry’ but excluding 
the V postulate and all theorems derived from it.

[3] During a seminar held on February 11, 1826 at the University of Ka-
zan, Lobačevskij made public his theories but the essay was never printed 
for fear of reactions from the scientific environment. Later he published 
some studies on “imaginary” geometry, the theory of parallel lines and a 
complete work [Lobačevskij 1856].

[4] He contributed to the foundation of ‘Elliptic geometry’.

[5] The paper was published posthumously [Riemann 1868].

[6] Emmer finds this shape in some ancient references: in Roman mosaics 
of the 3rd century and in the harnesses for the horses of the troops of 
the Tsar of Russia in the 17th century [Emmer 2003, p. 68].

[7] The table appears with the numbering XII in the edition of 1745-50 
and with the numbering XIV in the edition of 1761.


