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Introduction

Architects and artists have always found it useful to draw 
wide angle views, both for information gathering and for 
visualization purposes. Information gathering today re-
lies heavily on complex hardware and software, such as 
360-degree photography [Cabezos Bernal, Cisneros Vivó 
2016], 3D laser scanning, point clouds [Barba, Fiorillo, Nad-
deo 2014], etc., and immersive visualization can be achieved 
through VR panoramas of photographic data or rendering 
of 3D models [Rossi 2017, pp. 4-21]. These useful tools 
have their own pitfalls, as they can lead to black-box think-
ing [Araújo 2018b, p. 16], hence drawing, being a form of 
thinking through experimentation [Schön 2017, p. 159; Tran 
Luciani, Lundberg 2016, p. 1491] even more than a form 
of representation [García-García, Galán Serrano, Arce Mar-

tínez 2016, p. 1040], retains its importance. A drawing high-
lights the personal interpretation of reality in the eyes of the 
draughtman or his “conceptual model” [Arnheim 1954, pp. 
2, 171]. VR panoramas allow for an interesting interaction 
between digital rendering and traditional drawing, as they 
can be generated by hand-drawn spherical perspectives.
Flocon and Barre [Barre, Flocon, Bouligand 1967] systema-
tized the first ruler and compass construction of a spherical 
perspective (in fact only a hemi-spherical view), rendering 
the anterior hemisphere of an azimuthal equidistant map 
projection (the so called “fisheye” perspective, which allows 
for a 5-point-perspective). Their construction was extended 
to the full spherical view (a total spherical perspective, which 
allows for a 6-point-perspective) in a recent work [Araújo 
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connected) unions of segments, and all families of parallels 
have exactly two vanishing points. It was pointed out in 
[Barba, Rossi, Olivero 2018, p. 33] that it is quite hard, when 
a line crosses an edge of the cube, to know what angle it 
will make with the edge where it reappears.
The obvious solution is just to solve the individual classical 
perspectives of the cube faces the line projection touches. 
These are four at the most. This would require at least three 
points measurements for each pair of faces (fig. 1c). Not 
only is this inefficient, it creates a consistency problem when 
drawing from direct observation (unlike from plan and el-
evation), as each measurement of the visual angles (azimuth 
and elevation) will come with an independent random 
measurement error. The resulting object will not be a line 
but a union of segments, which will visibly change direction 
when seen immersively in the VR panorama (fig. 1c right).
We will solve all these problems by a different interpreta-
tion: we will regard a line as a subset of a geodesic and will 
determine the full geodesic image from just two points. 
This avoids the consistency problem, is maximally econom-
ic, and solves the angle problem automatically.

Cubical perspective

We begin by defining a cubical perspective. Given a point 
O in the 3-dimensional Euclidean space R3, a cubical per-
spective with regard to O is a map from R3\O to a compact 
(i.e., bounded and closed) subset of the plane R3 obtained 
in two steps: a conical projection towards the centre O of 
the cube, followed by a flattening of the cube onto a plane.
Given a spatial point P, its conic projection is the intersec-
tion of ray OP with the cube’s surface (fig. 1d left). We ob-
tain the perspective image of P by flattening the cube. This 
flattening consists in cutting seven edges and rotating the 
faces around the remaining edges in such a way as to bring 
all faces onto the same plane. The projection is defined 
up to the choice of the cuts. We specify one such flatten-
ing: choose two arbitrary adjacent faces, denoted by F (for 
Front) and R (for Right). Denote the other faces L (left), 
B (back), U (up), D (down), in the order implied by this 
choice of relative directions. Name the edges by the faces 
they separate, so for instance FR is the edge between faces 
F and R. Then cutting edges UL, UB, UR, DL, DB, DR, BL we 
obtain the flattening of (fig. 1d right). Edges that are cut in 
the flattening appear twice in the drawing, so for instance 
point S appears on the edge UL on both faces U and L.

2018a] that also provided a general mathematical schema 
for central curvilinear perspectives based on a redefini-
tion of the notion of anamorphosis. This schema was later 
applied to solve the equirectangular perspective [Araújo 
2018b] with a view to the hand-drawing of VR panoramas.
But if fisheye perspective has a special place among art-
ists and equirectangular spherical perspective has an im-
portant practical status among programmers (being the 
standard format for VR panoramas), cubical perspective 
deserves special consideration among architects, engineers 
and artists, due to the simplicity of its line projections [Ol-
ivero, Sucurado 2019, pp. 54-57]. By cubical perspective we 
mean the flat image obtained by projecting a 3D environ-
ment conically onto a cube’s surface and then flattening 
the cube. This has the advantage that the projection on 
each face is a classical perspective, or to be more precise, a 
plane anamorphosis with regard to the cube’s centre. The 
difficulty lies in managing all six faces in an efficient way, 
obtaining all vanishing points and line images in an organ-
ized and systematic fashion. We will see that simply treating 
each face as a classical perspective is quite inefficient.
Cubical perspective has been lately investigated with partial 
results in recent works [Barba, Rossi, Olivero 2018, p. 33; Ol-
ivero, Rossi, Barba, 2019, p. 61]. The present work completes 
the full solution outlined in [Araújo, Olivero, Rossi 2019] by 
framing cubical perspective as a special case of the spherical 
perspective schema of [Araújo 2018a]. We argue that cubi-
cal perspective is better seen as a spherical perspective, and, 
as in all such perspectives, most easily solved by first clas-
sifying and rendering all images of spherical geodesics. This 
is what we do in the present work, achieving in this way its 
complete and systematic solution, that is, a method for sys-
tematic and complete construction of all lines images and 
vanishing points of a given scene, from both direct angular 
measurements or from architectural plans.

Towards a consistent and efficient method

Let’s begin intuitively. Consider a station point O (the 
observer’s eye) and around it place a cube with centre 
O. Project the 3D environment conically towards O and 
mark where each ray hits the cube. Now cut and flatten 
the cube. You get a picture like (fig. 1a). Locally, on each 
face, it looks like a classical perspective; every line projects 
to a line segment, and sets of parallels have at most one 
vanishing point; globally, however, lines are (sometimes dis-



37

6 / 2020    

This procedure defines a perspective that behaves like a clas-
sical perspective in each projected face of the cube, but on 
the whole obtains a full 360-degree view of the environment 
around O with the interesting property that each line will 
have exactly two vanishing points. Note that the conical pro-
jection onto the cube creates an anamorphosis when seen 
from O. That is, an observer at O, looking from inside the cube 
at the conical projection of a spatial scene painted on the 
cube’s surface would have the impression of seeing the actual 
spatial scene. This anamorphic effect can be reconstructed 
from a given cubical perspective by folding it back into a 3D 
cube. This is just what happens with VR visualization: the pla-
nar image is folded onto a virtual cube and the viewer inter-
actively observes a flat anamorphosis (against the plane of 
the monitor) of the cubic anamorphosis specified by the per-
spective drawing. This allows us to go from an imaginary or 
observed flat drawing to an immersive environment (fig. 1b).

Immersive anamorphoses and spherical perspectives

We follow [Araújo 2018a, p. 149] in defining a spheri-
cal perspective as a central conical anamorphosis onto a 
sphere of centre O, followed by a flattening of the sphere 
that verifies certain continuity conditions. As explained in 
that work, the end result is a topological compactification 
of the spatial scene that preserves in the plane certain fea-
tures of the spherical anamorphosis. We now recall some 
important properties of spherical anamorphosis:
A spatial line l determines a plane π through the centre O 
of the sphere. π defines, by intersection with the sphere, 
a great circle, or geodesic g. The anamorphic image of l is 
one half of g (a meridian). That meridian’s endpoints are 
the two vanishing points of l, hence any line has exactly 
two such vanishing points. These are found by translating 
l to O and intersecting it with the sphere; hence the two 
vanishing points are antipodal to each other, i.e., diametri-
cally opposite on the sphere. Given a spatial object, its per-
spective is the plane drawing obtained from its anamorphic 
projection by flattening the sphere itself onto the plane.
Now consider that the cube is homeomorphic to the 
sphere (fig. 1e) – the conic projection towards a centre 
O in common to a sphere and a cube defines a bijec-
tion between the two surfaces that is continuous both 
ways (a homeomorphism). So, the flattening of the cube 
defined in the previous section is also a flattening of the 
sphere. Hence cubical perspective is a special case of a 

spherical perspective. We can characterize it as the cubi-
cal spherical perspective.
Through this homeomorphism all concepts of spherical per-
spective, such as antipodal points or geodesics translate directly 
to the cubic case. In particular, two non-antipodal points on the 
cube’s surface determine one single geodesic through them.
This means that if we have two points P and Q on two 
faces of the cube (fig. 1f), then there is a single correct way 
of connecting them that corresponds to a possible line 
segment between any two spatial points that project to P 
and Q. This will be part of a geodesic g. We also know that 
g must be made up of Euclidean line segments, as cubical 
perspective is a linear projection on each face.
In order to solve this perspective, we must show how to plot 
points from their angle measurements; plot antipodes; find 
vanishing points; classify and draw great circles. These are the 
common steps to the resolution of all spherical perspectives.

Solving the cubical perspective with descriptive geometry

We will see how to solve the cubical perspective through 
descriptive geometry constructions over the flattened cube. 
First some notation. We denote spatial points by bold font 
letters and both their conic projections onto the cube and 
their perspective projections onto the plane by the same let-
ter in light font, unless context makes the distinction unclear. 
We call O

I
 to the centre of each face I of the flattened cube 

(for instance O
F
 for face F). This corresponds to the orthogo-

nal projection of O onto each face. We say that faces F, R, B, L 
are horizontal faces and that U and D are vertical faces. This 
of course refers to relative bearings, not to absolute ones.

I - Antipodes
Let P be a point on the cube. We call antipode of P to its 
diametrically opposite point on the cube and denote it by P -.
Construction 1 (antipode of a given point P): if P lies on 
face I then P - lies on the opposite face, and by the op-
posite angles theorem, ∠POO

I
=∠P -OO

I
- (fig. 2a left). P - can 

be obtained by a sequence of two transformations on the 
perspective view (fig. 2a right): first rotate P by 180º around 
the z axis, then reflect it across the plane of the horizon H. 
There are two cases: if P is on a horizontal face, then the 
rotation becomes a translation of two cube side lengths to 
the right (resp. left), if P is on faces L or F (resp. R or B). If P is 
on face U (resp. D), then translate P down (resp. up) by two 
side lengths and reflect across the vertical axis through O

F
.
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Fig. 1. L.F. Olivero, Introducing cubical perspective. a) Imaginary architecture; Scan QR code to see VR as in b); c) Representation of a line l: green segments from 
measured A, B, S don’t align in VR; purple segments from measured A, B and calculated S, do; d) Flattening; e); Cube-sphere homeomorphism; f) Geodesic.
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II - Construction of geodesics
We will now show how to obtain the images of spherical 
geodesics (great circles) on the cube surface and on the 
flat cubical perspective.
Two non-antipodal points P and Q on the cube’s surface de-
termine a plane π=POQ through the centre of the cube and 
of its concentrical sphere, hence a spherical geodesic. The im-
age of this plane on the cube is a set of connected line seg-
ments over the cube surface. We know this since on each face 
we have the intersection of two planes, hence a line segment. 
We know these must connect because this is a topological 
property and the cube is homeomorphic to the sphere. We 
also know this image must be either 4-sided or 6-sided since 
for each of its points on one face, there is an antipodal point 
on the opposite face, hence the number of faces is even, 
hence it is 4 or 6, since just 2 segments wouldn’t connect.
We will now show the properties of the geodesic generat-
ed by two arbitrary points P and Q, according to the relative 
position of these points, and how to obtain its projection 
through descriptive geometry constructions. There are sev-
eral cases to consider, and it is useful to start by isolating the 
properties of geodesics according to their number of sides.

II.1 4-Sided Geodesics
Suppose that a geodesic g contains a segment l on a face 
I such that l intersects two parallel edges of I at points 
P and Q respectively. Then P - and Q - are points of g on 
the respective antipodal edges of the face opposite to I. 
Segments P -Q and PQ - belong to g and are located on 
faces adjacent to I and opposite to each other. Joining their 
endpoints, we get a 4-sided closed loop, PQP -Q -, which is 
the full image of g. We call such loops 4-cycle (fig. 2b-2e).
When a 4-cycle only touches the horizontal faces, we say it 
is panoramic. We say that a geodesic g is grid-like if projects 
on a face I as a segment l parallel to one of the edges e of 
that face. Then l intersects the two edges of I orthogonal 
to e in two points P and Q, hence P -Q - is the projection 
of g on the face opposite to I, and g = PQP -Q - is a 4-cycle. 
Also, by symmetry, QP - and Q -P pass through the centres 
of their respective faces. In (fig. 2e centre), PQ is directly 
passing through the centre of I, and therefore P -Q - will also 
do it in the opposite face. If l coincides with e, they are the 
diagonals of these faces (fig 2e right).
We note that if a geodesic crosses an edge at two points, 
then its plane contains the line that joins them, hence con-
tains the whole edge, hence is grid-like. Then a non-grid-like 
geodesic only crosses an edge at one point at most.

Intuitively, grid-like geodesics are those generated by “hori-
zontal” and “vertical” lines.

II.2 6-Sided Geodesics
Suppose a geodesic g contains a segment l that cuts ad-
jacent edges of a face I at points P and Q (fig. 2f). Then let 
l
O
 be the line through O parallel to l. l

O
 intersects a face J 

adjacent to I at a point M that lies on the plane through 
O parallel to I. Either P or Q share a face with M. Suppose 
without loss of generality that it is Q. Then there is a point 
N on an edge adjacent to that of Q such that the image of 
g on J is QN. Then joining segments PQ, QN, NP -, P -Q -, Q -N -, 
N -P, we get a the 6-cycle g = PQNP -Q -N - (fig. 2f-2i).

II.3 Descriptive Geometry construction of a geodesic through 
two given points
Given the perspective images of two points A and B which 
are not antipodal to each other, there is a single geodesic g 
through A and B. We will now use the classification above 
as a guide to draw the perspective image of g using de-
scriptive geometry.
Case 1: Suppose A and B are on the same face I. Then line 
AB cuts the border of the face at two points P and Q. We 
must consider several sub-cases:
Case 1.1: A and B are such that P and Q are on opposite 
edges. We have described above the construction, from P 
and Q, that results in a 4-sided cycle. We now show its de-
scriptive geometry implementation according to the faces 
and edges involved.
Case 1.1.1: P and Q are on vertical edges of one of the hor-
izontal faces. (fig. 2d) illustrates this case, assuming A and B 
on face F without loss of generality.  Then P - and Q - found 
by Construction 1, are also on two further distinct vertical 
edges of this same set of faces. Further, due to edge identi-
fication, one of the antipodes (assume it is Q -) will appear 
repeated in the drawing, on a further distinct vertical edge. 
Hence there are points on five vertical edges, that can be 
joined to obtain a 4-cycle geodesic of the panoramic type.
Case 1.1.2: P and Q are on horizontal edges. If P and Q are on 
the horizontal edges of face F or B (fig. 2c) then P - and Q -, are 
on the horizontal edges of B or F (respectively). Then edge 
identification finds P - and Q - again on faces U and D. This 
gives a 4-cycle that crosses only horizontal edges of F, U, B, D.
If P and Q are on one of the faces L or R (fig. 2d), then P - 
and Q - will be on the other. Without loss of generality, we 
can assume that P is on LU (resp. RU) and therefore Q is 
on LD (resp. RD). Then by edge identification, P - is on RD 
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Fig. 2. L.F. Olivero, Antipodes and geodesics. a) Antipodes of points P,Q and S; b, c,d) Geodesics for P and Q on parallel edges; e) Examples of 4-cycle geodesics (central 
and right examples are grid-like); f) 6-cycle geodesic; g, h, i) Geodesics for P and Q on adjacent faces.
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(resp. LD) and Q - is on RU (resp. UL). Together, these points 
determine 4 segments on L, U, R, D that define a 4-cycle. All 
the segments are disconnected on the plane.
Case 1.2: A and B are such that P and Q are on adjacent 
edges. We have seen above that this is a 6-cycle constructed 
with the help of the auxiliary points M and N. We now con-
struct these in the plane projection. To settle ideas, suppose 
that A and B are on face F and that P and Q are respectively 
on LF and FU, as in (fig. 2g). We obtain a further segment P 

-Q - on face B by taking antipodes and two further points, 
one on U and another on D by edge identification. We have 
seen above that we obtain two further points M and M - in 
the geodesic by taking l

O
, a parallel to AB through O, and in-

tersecting it with the cube. Since AB is on F, that intersection 
must lie at the plane parallel to F through O, hence its plane 
projections must lie at the vertical lines through the centre 
of faces L and R, or at the horizontal lines through the cen-
tres of faces U and D. Then to obtain M, we take a parallel 
to AB through O

F
. It must touch either the two vertical or 

the two horizontal edges of F. For concreteness suppose it 
intersects the verticals. Pass a horizontal line through the 
intersection on FR and intersect it with the vertical through 
O

R
 to obtain M. Draw a line P -M and intersect it with UR to 

find point N. Taking an antipode, we find N - on DL. We now 
have a segment in each face and a complete 6-cycle. The 
choices we made do not lead to loss of generality, as we 
can obtain all other cases by reflection through the vertical 
or horizontal line through the centre of O, or by cyclical 
translation of the face where A and B lie (figs. 2g-2i).
Case 2: Suppose A and B are points on faces adjacent to each 
other. In this situation we can have either a 4-cycle or a 6-cycle, 
depending on the relative positions of the given points. We 
need an auxiliary point to determine the geodesic through A 
and B. Let e be the common edge of faces F

A
 and F

B
 where 

A and B are located (fig. 3a). Let π = AOB be the plane of the 
geodesic determined by these points. Then segment AB is in 
π. Let δ

e
 be the plane through O and e. Then AB intersects δ

e
 

at a point C. Since C is in AB, hence in π, then the ray OC is in 
π. Let l

e
 be the line that contains edge e. Ray OC intersects l

e
 

at some point S, also in π. Then lines AS and BS will determine 
the images of the plane π in the faces F

A
 and F

B
.

We now show how to construct the auxiliary point S 
through a descriptive geometry diagram. We take edge e 
as a folding line so as to draw F

A
 and F

B
 on the same plane 

(fig. 3b). On the same drawing we consider a top view of 
the two faces, i.e., an orthogonal projection over a plane ε 
perpendicular to e. On ε, e projects as point Eε and faces 

F
A
 and F

B
 form two adjacent sides of a square. We draw 

ε so that the image of F
A
 on it coincides with the bottom 

edge of F
A
. The projection Oε of O on ε is at the centre of 

the square defined by F
A
 and F

B
, δ

e
 is a diagonal through 

Oε and Eε, with Aε and Bε on opposite sides of it. We find 
Cε by intersecting δ

e
 with Aε Bε. Let AB

e
 be the orthogonal 

projection of AB onto F
A
. Then C is the intersection of the 

vertical through Cε with AB
e
, and S is the intersection of 

O
A
C with l

e
 . Joining A (resp. B) to S we find the projection 

of the geodesic of π on face F
A
 (resp. F

B
).

This construction can be easily drawn on top of the flat-
tened cube, thus dispensing with awkward auxiliary draw-
ings. For instance, if the faces are F and R, the top view can 
be drawn on top of face D (fig. 3d).
S may or may not be on e (figs. 3c-3e). This, as well as 
the type of the segments obtained, determines the type 
of geodesic projection. Below we consider these several 
cases. Note that we insist that all constructions must be 
executed within the confines of the paper, that is, of the 
rectangle that contains the flattened cube. So, in Case 2.2, 
when S is outside e, we use an alternative construction to 
remain within the intended bounds (fig. 3e right). This is a 
general philosophical principle in spherical perspective: just 
like the drawing itself, its construction should be compact 
[Araújo 2016; 2018a].
Case 2.1: S is in e (figs. 3c, 3d). Then there is a point P

A
 on 

an edge of F
A
 such that AS ∩ F

A
 = P

A
S and a point P

B
 on an 

edge of F
B
 such that BS ∩ F

B
 = P

B
S. We have two possibilities:

If P
A
 is on the edge of F

A
 parallel to e, then SP

A
 crosses par-

allel edges of the same face, hence we have reduced the 
problem to a previously solved case, and the projection is 
the 4-cycle SPB P - P

A
. Note that this implies P

B
 ≡ P

A
 - (fig. 3c).

If P
A
 is on an edge adjacent to e, then we have reduced the 

problem to a previous solved case and the projection is a 
6-cycle, with P = P

A
 and Q = S. This implies that P

B
 must also 

be on an edge of F
B
 adjacent to e, and in fact P

B
 = N. So 

the 6-cycle is P
A
 S P

B
 P

A
 - S - P

B
 - (fig. 3d).

Case 2.2: S is not in e (fig. 3e). Then there are points P
A
 and 

Q
A
 in F

A
 such that AS ∩ F

A
= P

A
 Q

A
 and points P

B
 and Q

B
 in F

B
 

such that BS ∩ F
B 
= P

B
 Q

B
. P

A
 and Q

A
 must lie in two edges 

adjacent to each other, because if these edges were paral-
lel to each other, they would both be perpendicular to e 
defining a 4-cycle that would not touch the face where B 
is, but this is absurd since B belongs to g. Hence P

A
 and Q

A
 

are on edges adjacent to each other, and the geodesic is 
the 6-cycle with P = P

A
 and Q = Q

A
, N = QB, that is, it equals 

P
A
 Q

A
 Q

B
 P

A
 - Q

A
 - Q

B
 -.
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Fig. 3. L.F. Olivero, Geodesics for Case 2, with A and B in different faces: b) Construction of the auxiliary point S; c) P
A
 is on the edge of F

A
 parallel to e; d) P

A
 is on an 

edge of F
A
 adjacent to e; e) S is not in e.
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this with a couple of examples which are generalizations of 
classical perspective constructions.
Uniform Grids: let us recall and generalize the standard 
construction of a tiled floor (uniform grid) in classical 
perspective. Assuming the floor is horizontal and below 
O, and one of the vanishing points of the grid is centred 
on a face, then we can assume without loss of general-
ity (since the anamorphosis is independent of the cube’s 
size) that face D touches the floor. Hence the grid projects 
on D in true size, as an orthogonal grid of horizontals and 
verticals (fig. 4d) that intersect each horizontal face in 
uniformly spaced points. These lines can be extended as 
halves of grid-like geodesics, vanishing to O

F 
, O

L 
, O

R
 , O

B
. 

From the bottom left vertex of face F we send a diagonal 
to vanish at the middle point of edge FR. We get the ex-
act construction of Piero de La Francesca’s uniform grid 
[Della Francesca 2016, pp. 102, 366]: the 45-degree line 
intersects each row of lines going to O

F
 at exactly one 

point per row, and through these intersections we pass 
the rows of perpendiculars, to finish the grid. These lines 
are all grid-like, so they extend to points O

R
 and O

L
 as 

seen in Case I.1 of section II.3. The grid can be completed 
either by symmetry or by using another 45-degre line on 
face B to repeat the construction.
Here, a note is in order. In classical perspective, the location 
of the vanishing point of the 45-degree line will depend on 
the distance of the station point to the drawing plane. But 
in the cubical perspective that is no longer true: although 
the distance of O to the projection plane varies with the 
size of the cube, the position of the 45-degree vanishing 
point is invariant. It is always located exactly at the mid-
point of edge FR (figs. 4d, 4e). The geometric constraint 
between the various faces of the cube keeps it there, 
invariant for change of scale. Angles, not linear measure-
ments, determine the cubical drawing. In a way, the cube is 
just apparent: the underlying structure is that of a sphere. 
We note that this invariance of the position of the 45-de-
gree vanishing point is at the basis of the method used in 
[Olivero, Rossi, Barba 2019, p. 59] to plot horizontal and 
verticals in cubical perspective.
A small diversion may be enlightening. We note that there 
is a similarity between cubical perspective and the classi-
cal device called a perspective box [Spencer 2018; Verweij 
2010]. If we restrict our attention to a half-space defined 
by a plane through O and parallel to one of the cube’s 
faces, we get a perspective box (fig. 4f) with especially sim-
ple symmetry.

Case 3: Points A and B are on opposite faces. Then A and B - 
are on the same face, which reduces the problem to Case 1.

Measuring and plotting points

It may surprise the reader that we have plotted antipodes 
and geodesics from given points, but we haven’t said how 
to plot a particular point. It turns out that it is easier to plot 
points once we have classified the geodesics. The projec-
tion of a generic spatial point P is determined by its two 
characteristic angles λ (longitude or bearing/azimuth) and φ 
(latitude or elevation), which are the angles one measures 
when drawing from observation. λ and φ define two grid-
like geodesics gλ and gφ ,that intersect each other at P and 
P - (fig. 4a). We will find P by constructing these geodesics.
Suppose P is not on the vertical line through O (if it is, then 
it just projects as O

D
 or O

U
). Let πλ be the vertical plane 

through P and O. πλ makes an angle λ with the vertical plane 
through O and O

F
 . Let gλ be the geodesic of πλ. πλ intersects 

four faces of the cube. Let I be one of the faces not touched 
by gλ. Then O

I
 and P define a non-vertical grid-like geodesic 

gφ. The plane of that geodesic πφ makes an angle φ with H.
Construction 2 (geodesic gλ): let M

FD
 be the midpoint of 

edge FD. Let J be the point of the border of D such that 
M

FD
 O

D
 J = λ. The segment b = O

D
 J defines gλ and we 

construct it from the two points O
D
 and J as in section II.3.

Construction 3 (intersection of gφ with gλ): let Jλ be the in-
tersection of gλ with H and I the face where Jλ lies. OP 
intersects the vertical through Jλ at a point P

I
. Rotate the 

triangle Jλ OP
I
 around the vertical through Jλ to bring it to 

face I. We obtain a triangle Jλ OH
 P

I
 such that ∠ Jλ OH

 P
I 
= φ 

and | O
H
 Jλ |=| b |. If P

I
 is on face I, then P

I
 ≡ P (fig. 4a right). If 

is not, then triangle Jλ OH
 P

I
 intersects either the top (resp. 

bottom) border of face I at C
1
 and at C

2
, where C

1
 is on the 

vertical through Jλ. Let c be the segment C
1
 C

2
. On the top 

face (resp. bottom) we rotate c over the vertical through 
Jλ. Then the image of P will be the point on gλ such that | C

1
 

P |=| C
1
 C

2
 |=| c | (fig. 4b).

Note that when I is the face B, it is easier to plot P - and 
then use Construction 1 to get the antipode.

Examples

The constructions of geodesics obtained above allow us to 
solve any problem in cubical perspective. We will illustrate 
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Fig. 4. L.F. Olivero, Examples and plotting points. a,b) Image of P using segments b and c; c) Plot of equally distanced elements and VR visualization; d,e) Grid and 
extended grid construction; f) Uniform grid on a perspective box, made up of half a cube and perspective box example based on [Verweij 2010, p. 61].
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The telephone pole problem: consider now an example in-
volving the plot of equally distanced elements (fig. 4c) from 
two measured ones. Imagine a scene with equidistant thin 
columns (e.g. telephone poles) along a vertical plane π 
that makes an angle with the plane of face F. Suppose we 
measured two points from direct observation and plotted 
them as in section III: point A in the upper extreme of the 
first column and point B in the bottom of the second one. 
Assume also that we measured the angle of π with F and 
we found π to project on face R at 10º to the left of O

R
. 

We will show that these three measurements are enough 
to construct the whole scene.
Following Case 2 of section II, we construct the two geo-
desics g

1
 and g

2
 that pass through points A,V and B,V. Pass-

ing verticals through A and B we find Z on g
2
 and C on g

1 respectively. Then segments AZ and CB are the first two 
columns.
To find the other columns we will define an iterative proc-
ess based on the vanishing points of the diagonal line d = 
AB. This is a generalization of a well-known construction in 
classical perspective.
Let g

d
 be the geodesic of d. Since A and B are in the same 

face, we construct g
d
 by Case 1. Extending AB we get P and 

Q in adjacent edges of F. Therefore, g
d
 is a 6-cycle, and we 

construct it using points M and N as in Case 1.2. The van-
ishing set of π is the geodesic gπo

 obtained by translating π 
to O. gπo

 is generated by the vertical on face R that passes 
at 10 degrees to the left of O

R
 (second case of 1.1.2) and 

is a 4-cycle with segments all disconnected. Because d is on 
π, its vanishing points V

d
 and V

d
- must be in the vanishing 

set of π, hence we find them by intersecting g
d
 with gπo

. We 
join point C with V

d
 or V

d
- to construct g

d2
 following Case 2 

(in fig. 4c the construction is done above face R). Let X be 
the intersection of g

d2
 with g

2
. Pass a vertical through X to 

obtain point Y on g
1
. Segment XY defines the third column. 

We can iterate the process to get as many columns as we 
like. Since the diagonals go to the same vanishing points, 
the columns will be equally spaced.
It is important to highlight that in order to construct the 
same scene using only classical perspective in the plane of 
the face F, the (unique) vanishing point of the diagonals d, 
d

2
 and of lines AC, ZD would be outside of the drawing (by 

quite a lot in the first case). This worsens without limit as 
the angle of π with F goes to zero. Instead, using geodesics, 
we draw in a compact way by using whichever of the two 
vanishing points that happens to be more convenient for 
the draughtsman. In fact, unlike in classical perspective, we 

can guarantee that both the vanishing points of a scene 
and the diagrams required for their construction are within 
the bounds of the drawing.
In (fig. 1a) we have an elaborate example of both the 
uniform tiling of the previous section and of the present 
construction with regard to the columns. The column mul-
tiplication is in that case simplified, since π will be parallel 
to face F and the vanishing points of the diagonals of the 
columns will lie on face R and L rather than U and D. 

Conclusions

Each spherical perspectives, just like each cartographic 
map, and exactly for the same reasons, has its positive and 
negative aspects. Cubical perspective is no exception. Its 
positive aspects, when compared to the other main con-
tenders –equirectangular and azimuthal equidistant per-
spectives– are clear : it works as a classical perspective in 
each face, and therefore requires much less effort from the 
user’s intuition. Also, if classical perspective can be charac-
terized as the single spherical perspective that is still an 
anamorphosis [Araújo 2018a], hence retains the property 
of mimesis, then cubical perspective holds a close second 
place, being a set of six local anamorphoses. Finally, from 
the point of view of construction, unlike the other two 
contending perspectives, we have shown that we can 
construct all geodesic segments from the angular meas-
urements of two given points by descriptive geometry di-
agrams. In both the azimuthal equidistant and equirectan-
gular cases [Araújo 2018b; Barre, Flocon, Bouligand 1967] 
this can only be done with the measurement of specially 
chosen points which may sometimes be inconvenient to 
measure. Further, this construction is exact, without requir-
ing approximations or interpolations, due to its linearity. 
As for negative points, the main one is the enumeration 
of cases that we had to go through in this solution, that is 
comparatively complex when set up against the other two 
perspectives and the sometimes troublesome process of 
dealing with the discontinuities from one face to another 
[Olivero, Sucurado 2019, p. 57]. The abrupt changes of 
plane reflect themselves in a comparative inelegance of 
construction, unseen in the curvilinear cases. All in all, cubi-
cal perspective, when treated properly as a spherical per-
spective, must hold an important place in the growing bes-
tiary of immersive perspectives from which the architect, 
artist and engineer can choose according to their needs.
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