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Theories and Methods for Development
of Developable Ruled Surfaces and Approximate Flattening

of Non-developable Surfaces

Mara Capone

Introduction

Geometric genesis of surfaces and knowledge of their 
properties is the basis for solving many problems, both 
constructive and measurement. A developable surface 
can be manufactured star ting from a flat “strip”, using a 
flexible and non-deformable material. Developability is 
a very important feature of a surface. Geometry stud-
ies the properties that don’t change and, therefore, the 
shape of the “strip” to obtain a cer tain configuration, 
after a series of rigid movements, without stretching 
or tearing.

Theories

Differential classification of surfaces introduced by Le-
onhard Euler (1707-1783), and subsequently used by 
Monge, allows us to group surfaces according to the 
definition of curvature, which will be precisely defined 
by Carl Friedrich Gauss in 1902 [Gauss 1902, pp. 10-20], 
in four categories: surfaces with zero curvature, surfaces 
with positive curvature, surfaces with negative curva-
ture, surfaces with variable curvature.
The curvature of a curve in P is k, where k=1/r and r is 
the radius of the osculating circle of the curve, we can 
define as the main sections of a surface, the sections of 
the surface obtained with planes passing through the 
normal to the surface in P, with minimum and maxi-
mum curvature.
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On the other hand, Euler and Monge are the first to 
study systematically the ruled surfaces properties ac-
cording to the principles of “differential geometry” 
[Snežana 2011, pp. 701-714]. Both propose a general-
ization of the question, even if they never explicitly refer 
to the concepts on which this classification is based, and 
never speak about an osculating circle or an osculating 
plane [2].
Euler explicitly poses the problem of surfaces devel-
opment. In De solidis quorum superficiem in planum 
explicare licet he defines the geometric conditions 
of a surface so that it can be developed: “Notissima 
est proprietas cylindri et coni, qua eorum superficiem 
in planum explicare licet atquea deo haec proprietas 
ad omnia corpora cylindrical et conica extenditur, quo-
rum bases figuram habeant quamcunque; contra vero 

Leonhard Euler shows that the main sections of a surface 
belong to orthogonal planes.
Gaussian curvature is the product of the two main curva-
tures, so it can be positive, negative or equal to zero: it is 
positive when the osculating circles of the main sections 
are on the same side of the tangent plane, negative when 
they are on opposite sides, zero when one of the two 
main sections is a straight line.
The surfaces with zero curvature are some specific ruled 
surfaces, also called developable (fig. 1).
The Jean Pierre Nicholas Hachette’s book is very impor-
tant to study ruled surfaces. He classifies these surfaces 
into two categories: the developable surfaces, which are 
obviously ruled, and the ruled surface, which for the 
French scholar, are the non-developable ruled surfaces 
[Hachette 1828] [1].

Fig. 1. Osculator circles and Gaussian curvature of a surface.
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Fig. 2. Developable surfaces classification according to edge of regression. Determination of their developments.

sphaera hac proprietate destituitur, quumeius superfi-
cies nullo modo in planum explicari neque superficie 
plana obduciqueat; ex quo nascitur quaestio aeque cu-
riosa ac notatu digna, utrum praeter conos et cylindros 
alia quoque corporum genera existant, quorum superfi-
ciem itidem in planum explicare liceat nec ne? Quam ob 
rem in hac dssertationes equens considerare constitui 
Problema: Invenirea equationem generalem pro omni-
bus solidis, quorum superficiem in planum explicare licet, 
cuius solutionem variis modis sum agressurus” [Euler 
1772, p. 3] [3].
Starting from the research of the conditions that make a 
surface developable, Euler’s main merit is to have clearly 
related the principles of analytic geometry and differen-
tial geometry.

Monge, who introduces a new family of developable sur-
faces, opened up questions that still today are the basis 
of the different approaches for construction of complex 
shapes [4]. However, who has introduced a new family 
of developable surfaces is Monge, dealing with questions 
that still today are the basis of the different approaches 
for the complex shapes fabrication. In fact, using the theo-
rem that Monge illustrates in his lectures on Descriptive 
Geometry [Monge 1798] to demonstrate the domain of 
existence of a generic ruled surface, he defines a particu-
lar surface generated by a line that moves along a curve, 
tangent to the curve: this surface is called tangential de-
velopable [Monge 1795, p. 130] [5].
Therefore, based on the studies of Monge, Euler and Ha-
chette, we arrive at a general definition of developable 
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Fig. 3. You can easily manufacture conical and cylindrical surfaces using a “flexible” but not “deformable” material (graphic elaboration by the author).

Fig. 4. Tangential developable. On the left: Antoine Pevsner, Developable Surface, 1938; on the right: Antoine Pevsner, Developable Column, 1942.
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surfaces, which are obviously all ruled surfaces, and they 
can be grouped into three families: tangential develop-
ables, conical surfaces and cylindrical surfaces. In a general 
discussion, the tangential developable can be considered 
the generic case, in which the directrix (edge of regres-
sion) is a generic space curve (fig. 2c). If the edge of re-
gression is a point, we obtain a conical surface (fig. 2a), 
while if the regression edge is a point at infinity, we obtain 
a cylindrical surface (fig. 2b).
It is very important to define the concept of unrolling 
to study how to construct unrolled shapes. As we know, 
a surface can be unrolled if it can be put on a plane us-
ing an isometric transformation, without cuts or overlaps. 
We can immediately verify this property for the conical 
surfaces and the cylindrical surfaces (fig. 3), but this is 
more complex for a tangential developable (fig. 4), and it 
is complex to have its unrolled shape.
These attempts have been made to find a solution to 
the question posed by Euler, “quorum superficiem iti-
dem in planum explicare liceat nec ne?”, which surfaces 
can be unrolled on the plane and which cannot? In this 
way we define the geometric rule that will allow us to 
move from theory to practice: what can we unroll and 
how can we find the unrolled shape of a tangential de-
velopable? It is known that a ruled surfaces can be un-
rolled if two generatrices infinitely close intersect each 
other and they are therefore coplanar. This is clear for 
the conical surfaces in which all the generatrices pass 

through a fixed point, the ver tex (fig. 2a), and for the 
cylindrical surfaces because all the generatrices are 
parallel and then intersect each others in a point at in-
finity (fig. 2b). In the case of the tangential developable 
we must use the principles of differential geometry 
and the concept of limit and derivative to demonstrate 
this concept. In fact, the tangent of a plane curve at P is 
the limit potion of PQ line when point Q approximates 
or tends to P. Defining the tangent at a point P to a 
plane curve, it is possible to prove that it is unique, so 
Leibniz introduced the concept of curvature and the 
definition of osculating circle [Migliari 2009, p. 103]. The 
osculating circle of a sufficiently smooth plane curve at 
a given point P on the curve has been traditionally 
defined as the circle passing through P and a pair of ad-
ditional points on the curve close to P.  The osculating 
plane to a space curve at a point P of that curve is the 
plane given by the tangent at P and a neighbour point 
on the curve. We can demonstrate that tangents of a 
space curve are intersections of consecutive osculat-
ing planes, so developable surfaces can also be defined 
as the envelope of the movement of osculating plane 
in space [Fallavolita 2008, p. 111].
Thus, summing up, from a theoretical point of view, the 
assumptions placed at the base of the experimentation, 
which is described here, can be summarized as follows:
- all developable surfaces are ruled surfaces;
- all developable surfaces are zero Gaussian curvature;

Fig. 5. On the left: Gaspard Monge, 1780 [Monge 1780]; on the right: Gaspard Monge, 1801 [Monge 1801].
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- developable surfaces can be generated by tangent line 
motion on a space curve;
- developable surfaces can be generated by osculating 
plane motion on a spatial curve;
- a surface is unrolled if two successive generatrices are 
always incidence.
All studies done in the past, whatever is the prevailing 
approach used (synthetic, analytical or differential geo-
metrical) have historically been based on spatial intuitions 
that are often poorly represented or not represented at 
all, and therefore not very “visible”. The aim of our re-
search is also to use 3D modeling tools like a method to 
demonstrate (as well as to show) and to use the genera-
tive algorithmic modeling to compare different souls of 
Geometry: descriptive, analytical and differential.
Therefore, star ting from these assumptions, our experi-
mentation is based on hybridization of old principles 
and traditional methodologies with new generative 
modeling tools. We are trying to identify innovative re-
search approaches in applied geometry, in which geom-
etry knowledge is always foundation for the solution of 
complex construction problems.

Methods

Geometric construction of a conical or cylindrical sur-
face does not present par ticular problems, assigned 
the directrix and the ver tex V (also a point at infinity) 
we have to construct n generatrices that join the ver-
tex V with the n points of the directrix. You can easily 
generate the surface using a 3D modeling software, 
extruding the curve in one direction or to a point 
(fig. 2). It’s much more complex generating tangential 
developables. It’s the same to find unrolled shape, it 
is very easy to find conical or cylindrical surfaces de-
velopment using traditional methods or digital tools, 
on the contrary it is very difficult to find the unrolled 
shape of a tangential developable. 

Tangential developable
In Descriptive Geometry a tangential developable is gen-
erated from a spatial, set as the surface swept out by the 
tangent lines to the curve. This particular group of ruled 
surfaces can be generated using only one directrix (the 
edge of regression) because the tangent in P is unique and 
it is always uniquely determined [Migliari 2009, p. 160].

A tangential developable specializes if the edge of regres-
sion is a cylindrical helix: the surface generated by the 
motion of a tangent line to a cylindrical helix is a develop-
able helicoid.
It is difficult to construct a tangent line to a spatial curve 
with traditional graphic methods, for this reason, most 
of historical texts analyzed are without images that 
could be necessary to show the complex spatial rea-
sonings. The advances in applied geometry derive from 
the use of digital tools that allow you to automatically 
construct a tangent line at a point in a spatial curve. 
To generate the surface, first we have to construct n 
tangents which, although automatically shown, must be 
determined one by one, and then the surface can be 
generated, considering the n generatrices represented. 
In this way the difference between the generated sur-
face and the tangential development depends on the 
number of generatrices that you used.
Using the Gaussian curvature analysis tool k, you can ver-
ify if the surface thus obtained is developable (green, k = 0) 
or not (blue, k < 0) (fig. 6).
The case of the developable helicoid is the simplest, 
in fact, if the edge of regression is a cylindrical helix, in 
order to generate the surface it will be sufficient to con-
struct the tangent at a point P and then make it move 
along the helix [6].
In this case, generative modeling is a powerful tool, 
useful not only for reiterating procedures but also for 
verifying theories. In fact, a tangential developable can 
be unrolled with some unavoidable approximations, as 
the two consecutive generatrices intersect each oth-
ers on the edge of regression only in an infinitesimal 
neighborhood, with n tending to infinity. As par t of 
our experimentation we have developed a definition, 
that follows geometrical principles, to construct de-
velopable ruled surfaces using a general spatial curve. 
This spatial curve can be imported by Rhino or pa-
rametrized in relation to specific needs. Dividing the 
assigned spatial curve (the edge of regression) in n 
par ts, our algorithmic definition allows to generate the 
surface by constructing n lines (generatrix of the sur-
face) passing through the n points and tangent to it. By 
modifying the length of the generatrix and the edge of 
regression it is possible to obtain infinite developable 
surfaces. This surface may be cut to define the edge, 
which is otherwise automatically generated as a func-
tion of the generatrix length (fig. 6).
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Developable strip modeling using two directrices
Developable strips modeling using two directrices, c and 
c’ is more usual than tangential developables.
Using the methods of Descriptive Geometry, we 
know how to model a developable surface using two 
spatial curves c and c’ (directrices). We have to se-
lect a point P on the curve c and we have to con-
struct the conical surface (ver tex P and directrix c’): 
the generatrix of the developable surface, in point P, 
is the line obtained by considering the plane passing 
through P and tangent to the conical surface. Reiterat-
ing this process we can generate n generatrices of the 

surface. In this way we have shown that the tangent 
plane for a generatrix of a developable surface is only 
one [Migliari 2009, pp. 213-218]. This very impor tant 
geometric proper ty of the surfaces that can be devel-
oped has been fundamental to define the algorithm 
that allows us to construct a developable strip using 
two directrices.
However, it is not always possible to obtain a developable 
surface by arbitrarily assigning the two curves. In fact, it 
could be that the two curves, arbitrarily assigned, are not 
“extended” enough, or, vice versa, are too long. For this 
reason, it is not possible to determine the generatrix in 

Fig. 5. Confronto tra un documento d’archivio (Archivio SNOS, Torino) e il modello informativo relativo a un dettaglio della colonna.

Fig. 6.Tangential, parametric model: approximation improves (k = 0) increasing the number of generatrices (definition by the author).
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some points. In this case it will be necessary to define the 
domain of existence of the surface (fig. 7).
The problem seems to be immediately solved using the 
3D modeling tools, in fact, the DevLoft command of Rhino 
allows you to automatically generate a developable sur-
face by two spatial curves. This surface has generally zero 
Gaussian curvature even if in some points it has nega-
tive Gaussian curvature (fig. 7), therefore, theoretically, 
we can’t unroll it.
There are some different solutions to solve this prob-
lems, it depends on the specific application. One of 
the possible solutions is cer tainly to extend the curves 

and build the surface by analyzing the curvature. In this 
way, step by step, by correcting the curves to obtain 
surfaces with zero Gaussian curvature, you can mod-
eling strips that can be developed, which can be cut 
according to need.
Through the algorithmic modeling, there are definitions 
that allow to modify the directices in order to guarantee 
the existence of the developable.
In our research, we have done the following tests using 
generative algorithm modeling:
- construction of a developable surface using two directri-
ces, c and c’ [7];
- determination of the the edge of regression by joining 
the consecutive generatrices;
- tangential developable modeling, using our definition;
- comparison of the two surfaces (fig. 8).
This procedure can be used to design a developable 
strip, because it is patch extracted from tangential de-
velopable, and to find the unrolled shape (fig. 9) [Lanzara 
2015, pp. 199-203].

Unrolled shape of tangential developable
A surface, as we said, is developable if it can be unrolled 
on a plane with rigid movements (isometric transforma-
tion), without stretching or tearing: this is possible if two 
consecutive generatrices are coplanar.
We have analyzed principles and methods used to find 
the unrolled shape of a tangential developable. We have 
defined different approaches that allow us to determine 
the “approximate unrolled shape” of a non-developable 
surface. We have also considered materials and manu-
facturing techniques that can solve approximation prob-
lems connected to “smash”, allowing the panel deforma-
tion thanks to “cuts”, kerfing, or “overlapping”, bending.
As we noted, developable surfaces have zero Gauss-
ian curvature, consequently they can be manufactured, 
using a flexible and non-deformable material, star ting 
from their unrolled shape, simply by shaping the cut out 
shape. This kind of surfaces are easy to manufacture and 
this has favored their diffusion.
In the case of cylindrical surfaces the edge of regression 
is a direction, so the generatrices are all incidents in one 
point at infinity. Using the traditional method introduced 
by Monge, in order to determine the development of 
the surface, the directrix is divided into n parts and a 
prismatic surface is obtained. This coincides with the 
conical surface when n to infinity. Cylindrical surface is 

Fig. 7. Developable strips constructed using two spatial curves, c and c ‘. 
Definition of existence domain (graphic elaboration by the author).
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Fig. 8 Algorithmic modeling: comparison between strip obtained using two directrices and the tangential generating using the edge of regression.
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Fig. 9. Local optimization approaches to design a developable strip (graphic elaboration by Emanuela Lanzara).
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developed by unrolling the n quadrilateral faces in se-
quence on a plane.
Fur thermore, conical surfaces can be considered de-
velopable surfaces in which the edge of regression is 
a point, so two consecutive generatrices are always 
intersecting lines. To define the unrolled surface, we 
divide the directrix into n par ts and transform the 
continuous surface into a discrete surface: a pyramid. 
using 3D modeling, there is a command that is able to 
automatically unroll both conical surfaces and cylindri-
cal surfaces [8].
The method for finding the unrolled shape of a tangen-
tial developable is more complex, in this case differential 
geometry application is evident. Monge uses the prin-
ciples of differential calculus to study the properties of 
the developables surfaces [Migliari 2009, pp. 106-108]. 
Each developable surface can be flattened onto a plane 
without distortion and, in a limited region, without over-
lapping. The unrolled shape of the surface generated by 
the infinite tangents to a space curve is obtained by 
considering n generatrices and flattening onto plane 
the surfaces included between two consecutive genera-
trices. If we consider two consecutive tangents t

1
t
2
 (fig. 

10), in theory incidents, they identify a plane, so if we 
rotate t

2
t
3
 around t

2
 and repeat the operation for the 

subsequent tangents we find the unrolled surface. The 
unrolled surface depends on the edge of regression. It 
may happen that the configuration of the surface is such 
that portions of unrolled surface overlap with the oth-
ers [Fallavolita 2008, p. 113], in these cases, it is neces-
sary to divide the design surface into parts in order to 
manufacturing it.
Development is therefore easy with regard to conical 
and cylindrical surfaces, in this regard the Sereni says:  
“il metodo rigoroso non può che desumersi dal calcolo 
ed i metodi approssimativi sono essi medesimi soverchia-
mente lunghi, e di sì raro uso nelle arti che no meritano 
d’arrestarci davvantaggio… in ultima analisi tutti si ridur-
rebbero a costruire lo sviluppo di una superficie polied-
rica… e quanto minore fossero gli angoli tanto più il lavoro 
si accosterebbe alla precisione” [Sereni 1826, p. 49] [9].
Interesting is the approach of Leroy that highlights the 
importance of result knowledge to distribute errors. 
The scholar addresses the issue of unrolled shape of 
tangential developable, in particular of the developable 
helicoid, in the same way for a conical or cylindrical 
surface, he says: “dividendo una curva piana situata sulla 

superficie in piccoli archi sensibilmente confusi con le loro 
corde: allora i settori elementari proiettati potranno essere 
considerati come triangoli di maniera che, se si costruisco-
no questi triangoli sopra uno stesso piano ed allato gli uni 
degli altri, il loro insieme rappresenterà lo sviluppo della su-
perficie in questione” [Leroy 1826, p. 289] (fig. 10). Leroy 
underlines that the need to approximate a continuous 
surface into polyhedric surface results in an accumula-
tion of errors that could be avoided if we could know 
the unrolled shape of the curve. We know that helixes 
on developable helicoid turn in concentric circles, for 
this reason the edge of regression will turn into a circle 
whose radius depends on the radius of curvature of the 
helix (O

2
A

2
) and it can be determined by using the dif-

ferential calculation or graphically. To draw the unrolled 
shape of the developable helicoid, it will be sufficient to 
fix the length of the assigned generatrix (for example 
A

2
W

2
) on the helix development and draw a concentric 

circle with radius O
2
W

2
 (fig.10).

We have defined a method that allows to find the un-
rolled shape of any developable tangential using the al-
gorithmic modeling. If we divide the edge of regression 
into n parts and we consider n tangents (generatrices 
of ruled surface) we have that two consecutive tangents 
intersect on the edge of regression. This is true only in 
a small, infinitesimal neighborhood. In fact, if we divide 
the edge of regression into n parts and consider two 
successive tangents, t

1
 and t

2
, led respectively by points 

1 and 2 (fig. 10), we define the non-flat quadrilateral 
A12B. When point 2 goes to point 1, points 1, 2 and B 
can be considered aligned, it follows that, approximately, 
it will always be possible to define a flat triangular face 
and then unroll the surface composed by n triangular 
faces. The approximation of the unrolled surface obvi-
ously depends on n.
We have done two tests in our research and we have 
analyzed the results to evaluate which of the two meth-
ods allows to obtain the unrolled shape that best ap-
proximates the real surface. In the first case we have 
divided the surface using the n tangents and we have 
defined a surface composed by ruled surfaces obtained 
by using the consecutive tangents, A1, B2, C3… (fig. 10). 
These ruled surfaces are modeled by using the no-flat 
quadrilater A12B, therefore, as we have previously said, 
they cannot be unrolled. Therefore, they have been 
“flattened” using the smash tool, which, using Rhino, al-
lows us to determine the approximate development of 
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a non-developable surface. We have determined the un-
rolled shape of the surface by sequentially unrolling the 
quadrilaterals onto plane [10].
In the second case, we have supposed that the points 1, 
2, B, and 2, 3, C are aligned and we have split the surface 
into triangles AB1, BC2, CD3… and we have determined 
the unrolled shape of the surface by unrolling the triangles 
onto plane. Comparing the metric values of the 3D sur-
face, namely the length of the edges and the area, with the 
unrolled shapes that we have constructed, it results that, 
in the first case, the unrolled surface is larger than the real 
one, while in the second case it is smaller. For this reason, in 
order to construct exactly the 3D shape, using the unrolled 

shape that we have determined, in the first case overlaps 
(bending) must be provided, in the second case we have to 
cut (kerfing) and the material must be “deformable”.

Approximate flattened shape of double curvature surface
There is no doubt about the advantages offered by using 
developable surfaces to manufacture objects that can be 
fabricate using a flat panel. To do that you need to know 
the unrolled shape in order to draw the exact contour 
of the surface to be cut out on the plane. We can find 
approximate but sufficiently precise unrolled shape of 
non-developable surfaces useful for certain applications.
We have identified in our research the following most 
significant approaches to construct a double curved sur-
face using flat elements:
1. to approximate the complex surface splitting it into 
strips that can be developed, then identifying some re-
markable lines on the surface in order to optimize the 
construction process;
2. to design the surface using strips that can be developed 
[Liu et al. 2006];
3. to use processes that make the panel flexible and de-
formable (kerfing or bending) to manufacture the shape 
designed from a flat element.
We have studied non-developable surfaces and in par-
ticular the case of hyperbolic paraboloid, to highlight 
some of the problems and to define some possible ap-
proaches to transform a non-developable surface into 
a flat surface that, with better approximation, is able to 
preserve the characteristics of the 3D surface.
Main research goal is to highlight, through the applica-
tions, how these approaches can influence the figurative 
outcome and the manufacturing process. 
The hyperbolic paraboloid is a ruled surface that may 
be generated by a moving line that is parallel to a fixed 
plane, it is a not developable surface because two con-
secutive generatrices are always skew lines and Gauss-
ian curvature is always negative.
There are several tools that allow you to automatically 
obtain the approximate unrolled shape of a non-devel-
opable surface: using Rhino the command smash and the 
command squish (fig. 12). The critical analysis of the results 
obtained using a 3D modeling software is part of our 
experimentation. Using the smash command we can au-
tomatically generate an approximate unrolled shape for a 
double curved surface, but using this flat shape we can re-
construct the real 3D shape only if we use a deformable 

Fig. 10. Charles François Antoine Leroy: generic developable, developable 
helicoid, development of helicoid. Division in twisted quadrilateral or in 
triangular elements.
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Fig.11. Procedural modeling: tests for developable helicoid fabrication (graphic elaboration by the author).



66

3 / 2018    

Fig. 12. Prototypes in wood and cardboard for a lamp manufacture: portions of developable helicoids. Design by Mara Capone.

Fig. 13. Tests for hyperbolic paraboloid manufacture: kerfing and bending experiments.
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Notes

[1] Hachette proposes a classification of surfaces in three groups: developa-
ble surfaces, surfaces of revolution and ruled surfaces “de surfaces qu’onvient 
de définir et qui sont désignées par le noms de surfaces developables, surfaces 
de révolution, surfaces réglées” [Hachette 1828, p. 30].

[2] We know that the osculating circle is the circle that approaches the 
curve most tightly in an infinitesimal interval. The curvature at one point 
P is the inverse of the radius of the osculating circle k=1/r. The osculating 
plane in a point P of a space curve, is the limit position taken by the plane 
passing through the tangent in P to the curve and for another point Q of 
the curve, to the tendency of Q to P. If we consider a point P of a skewed 
curve, the osculating plane is the plane identified by the tangent vector t in 
P and by the normal vector n.

[3] “Notissima est proprietas cylindri et coni, qua eorum superficiem in planum 
explicare licet atque ad eo haec proprietas ad omnia corpora cylindrical et 
conica extenditur, quorum bases figuram habeant quamcunque; contra vero 
sphaera hac proprietate destituitur, quum eius superficies nullo modo in planum 
explicari neque superficie plana obduciqueat; ex quo nascitur quaestio aeque 
curiosa acnotatudigna, utrum praeterconos et cylindros alia quoque corporum 
genera existant, quorum superficiem itidem in planum explicare liceat nec ne? 
Quamob rem in hac dsisertationes equens considerare constitui Problema: In-
venire aequationem generalem pro omnibus solidis, quorum superficiem in pla-
num explicare licet, cuius solutionem variis modis sum agressurus”, Euler 1772.

[4] The most advanced researches in complex surfaces manufacture take 
place in the field of applied geometry. One of the possible solutions is to 
divide the surface into parts that can be made by approximation using 

strips that can be developed. This process is very advantageous for surface 
manufacture that can be built using flat elements to be put into shape.

[5] In his first lessons of Descriptive Geometry, Gaspard Monge teaches 
an elegant “existential demonstration” of ruled surfaces, generated by the 
motion of a straight line that is supported by three generic spatial curves 
assumed as direcrices. [Migliari 2009, p. 154].

[6] For example, using Rhinoceros, you can use sweep one rail.

[7] We used Tapeworm script by Mårten Nettelbladt to generate a develo-
pable strip. The tool allows to modify two directrices in order to guarantee 
the existence of the developable.

[8] Using Unroll, Rhinoceros allows to determinate the development of 
developable surface. We can automatically unroll conical and cylindrical sur-
faces. There are some problems to determine development of a tangential 
surface, even if it is developable.

[9] Sereni is a supporter of analytical method, in fact, he states that “the ap-
proximate methods are themselves overwhelmingly long, and so rarely used 
in the arts that they do not deserve to be arrested, they would ultimately […] 
reduce to building” [Sereni 1826, p. 49].

[10] Using generative algorithms the development of the tangential ruled surfa-
ce was determined by dividing into n parts (variables) the regression edge and 
building the tangents to the curve passing through the n points so determined. 
In this way, the surface generated by the subsequent tangents was determined.

material. The squish command uses a different algorithm, 
performs the smoothing of meshes or 3D NURBS sur-
faces, modifying the starting area, allowing the display and 
control of the local compression and stretching zones.
Applying the smash and squish commands to the hy-
perbolic paraboloid piece, used in our tests, we ob-
tained different shape (fig 12). We have done these 
observations based on results: the area changes with 
respect to the real one and the generatrices of one of 
the two groups deform themselves, it follows that to 
transform the flatten shape into 3D designed shape it 
will necessarily be breakings and/or overlaps. In fact, 
if the generatrix AD becomes curve, it turns into the 
curved edge A’D, this must be deformable, therefore 
the cuts must be made to allow the curve A’D’ to as-
sume the configuration straight of the designed shape. 
Similarly, if the generatrix AB is deformed, it will be 
necessary to allow that the curve A’B is able to be 
transformed into the straight segment AB (fig. 12).
Using generative modeling we tested different meth-
odologies to simulate the deformation according to 

the cuts made. Our goal is to identify processes and to 
develop tools to define the approximate flatten shape 
of a double curvature based on the knowledge of geo-
metric proper ties.

Conclusions and future research developments

The topic of fabricating 3D complex surface shape us-
ing a flat surface has been historically addressed and 
it is the basis of search for optimized solutions based 
on applied geometry. The use of parametric modeling 
tools allows us to address this very complex problem, 
opening new fields of experimentation and research 
based on ancient principles whose verification is al-
ways better suppor ted by diffusion of digital manufac-
turing techniques.
Our research star ts from the study of geometry and 
algorithmic modeling tools and, by hybridizing different 
methodologies, tends to develop general solutions that 
can be used in different fields.
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