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On the Genealogy of Geometry in Drawing for Design:
Primitive Future of a Techno-aesthetic Issue

Fabrizio Gay

Introduction 

The acquisition of this historical knowledge –accord-
ing to the purpose of this issue of diségno– should 
help us to understand what we actually mean when 
we talk about ‘Geometry’ in the field of university re-
searches especially applied to Design, Pedagogy and 
Ar ts schools. In this field, specifically, the history of ge-
ometry should not be mistaken for the histories of 
mathematics [Chasles, 1837, Loria, 1921], or with the 
history of ar t and ancient erudition: these general his-
toriographical issues have other (authoritative) scien-
tific and editorial references.
The ‘geometry for the design’ can be actually regarded 
as a single issue (topic) provided that at least two condi-
tions are met: 1°) the presence of a common technical 

subject shared by studies of different disciplines, and 2°) 
common vocabulary and methods shared by the differ-
ent points of view.
1°) ‘Geometry for the Design’ means an ‘applied science’ 
that studies the ‘categories of the object shapes’ (eidetic 
categories), as well as their projective and diagrammatic 
representations. The history of this ‘practical geometry’ 
gathers those studies that, although relying on different 
points of view, explicitly or implicitly include all the geo-
metric-morphological aspects pertaining to the field of the 
history and anthropology of ‘visual artefacts’, especially of 
those ‘visual artefacts’ specifically ‘designed to represent’. 
Therefore, the stories of visual artefacts investigate specific 
‘geometric-morphological issues.’
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lar to those which control airplanes, the road traffic or 
even the secretion of hormones– goes well beyond the 
imagination of the same authors. This happens also with 
the operation of microprocessor networks in the objects 
around us, which relies on algorithms going exceeding the 
visual and object imagination of the ancient ‘theatres of 
machines’ and the technical drawing.
The steam engine and the Géométrie Descriptive (DG) 
are both technical objects belonging to the first industrial 
revolution at the end of the 18th century; while the cur-
rent mechatronic artefacts, often provided with artificial 
perception, fall within the computational geometry (CG) 
and, like the latter, are the result of the third as well as of 
the incoming fourth industrial revolution.
Descriptive Geometry (DG) and Computational Geom-
etry (CG), albeit in different periods, arise from the same 
historical development, i.e. the means of technical concep-
tion of the artefacts. The DG is associated with the ‘l’art 
du trait’, stereotomy, to mechanical drawing and photo-
grammetry; while the CG is connected with the CAD and 
CAM systems, automatic photogrammetry and artificial 
vision. They are both designed as translation systems for 
geometric entities from a ‘mathematical representation’ to 
drawings, prototypes and models. They both result from 
the elaboration of new categories of curves and surfac-
es, intended as mathematical objects to be geometrically 
transformed and created in workshops. Together with the 
Géométrie Descriptive and the manufacture of cannons, 
Gaspard Monge, established the Differential Geometry 
where the ‘constant slope surface’ is still named after him. 
In line with the improvement of numerical control ma-
chines in the Renault factories, thus laying the foundations 
for CAD and CAM systems, Pierre Bézier created an ante-
litteram CG thanks to the invention of ‘polynomial curves 
and surfaces’ which are performed still today based on the 
algorithms of Paul de Casteljau and are named after him.
DGs and CGs –surfaces of Monge and surfaces of Bezier– 
both result from the same two-century development of 
design and industrial manufacture, moreover they arise 
from the same thousand-year-old development of the sci-
ence of vision.
The DG actually emerged some centuries before its es-
tablishment through the invention of the Renaissance 
theory of perspective –i.e. the development of geometric 
optics in the perspectiva artificialis– as well as with the first 
projective propositions of practical geometry. Conversely, 
the further progress of the Science of Vision towards the 

Historical studies on ‘geometry’ intended as such take into 
account various disciplines –from the history of exemplary 
(artistic) visual artefacts, to essays or the current paramet-
ric modelling, thus offering a multi-faceted overview to be 
intended as a single thematic area, albeit transdisciplinary.
The ‘geometry for the design’ globally consists of ‘para-
digms’, i.e. a collection of geometric models, a sort of (his-
torical and current) synchronic plurality, which could be 
considered ‘Descriptive Geometries’ to point out a geneal-
ogy which precedes and still continues after the historical 
parabola of Descriptive Geometry.
Based on our assumptions, these ‘Descriptive Geometries’ 
share the same existence of the ‘technical objects’ de-
scribed by Gilbert Simondon [1958; 1992; 2013] and, as 
such, according to the French philosopher, their specific 
technical-aesthetic dimension can be grasped.
2°) The unity of this ‘collection of geometric models’ 
is made up of two aspects: i) the mutual comparabil-
ity (translatability) of the models and ii) their adequacy, 
namely their ability to describe the most significant aspects 
of the object shapes and their images. Precisely these two 
conditions –i) comparability of the models and ii) their 
explanatory adequacy define the thematic unity and the 
relevance of the historical studies on the ‘geometric mor-
phology of visual artefacts.’
This reasoning, however features some criticalities.
Any ‘naïve realist’ like me would wonder what the ‘real ex-
planatory adequacy’ of the geometric models actually is. 
In order to adequation the geometric descriptions to the 
physical and anthropological (cultural) values that indicate 
the meaning to the object shapes, it is necessary to gain a 
historical awareness of the actual technical and aesthetic 
dimension of geometry.

From Descriptive to Computational Geometry 

The internal combustion engine of modern cars still pre-
serve something similar to the ancient steam engine. We 
realize this fact only if we trace the genealogy of the design 
of that type of engine, going back to Watt machine. How-
ever, the present cars are complex mechatronic artefacts 
so complex that it is no longer possible to figure out the 
calculations that a series of algorithms –in spite of us– per-
forms in a fraction of a second, for example, to adapt the 
braking command to the four wheels according to their 
specific speed. The consistency of these algorithms –simi-
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computational models of the psychology of perception as 
well as towards artificial (robotics) vision has promoted 
the development and applications of the CG, as will be 
discussed in the conclusion.
Then –shifting from the scientific background to the tech-
nical practices– it is worth stressing that DG and CG both 
refer to the techniques of survey of the surfaces of real 
bodies in the space. The representation method of the 
DG par excellence is the ‘bicentric projection’, namely a 
kind of ‘stereoscopic vision’ arising from the ancient topo-
graphic assessment system based on ‘forward intersection’, 
a scheme similar to the geometric model of stereo-pho-
togrammetry.
The CG can be also regarded as an enhanced develop-
ment of photogrammetry which, however, leverages the 
technological evolution of digital sensors and their sensitiv-
ity to a wider range of radiations and vibrational phenom-
ena.  After the spread of digital imaging systems, thanks to 
the CG algorithms, the DG photogrammetric processes 
and, above all, Epipolar Geometry, are now fully available 
to everybody through software working on personal com-
puters, with images provided by simple cameras or shared 
on the web. Moreover, the CG grew in the Eighties in line 
with the great success of 3D data optical acquisition sys-
tems –from ‘active triangulation’ to ‘structured light’– by 
applying the constant invention of new sensors and scan-
ning solutions of natural objects, artefacts, minerals or liv-
ing subjects to the traditional topographic and photogram-
metric schemes.
It is impossible to summarise the amazing technological 
development of the spatial geometric data collection sys-
tems over the last thirty years, together with their nu-
merous applications in various fields –from biology to 
astronomy, from the manufacturing to the entertainment 
industry, from the medical image to the robotic vision– 
up to our everyday life through, e.g., smartphones and 
means of transport.
For example, the evolution of tomography –starting from 
the first machines of Godfrey Hounsfield to X-ray scan-
ning devices– can help us understand how the CG has 
extended the DG applications to bodies and dimensions 
previously inaccessible to the human eye and imagina-
tion. From the molecular scale –for example in the study 
of protein vibration phenomena– to astronomy –in the 
study of the spongy form of matter in the cosmic space– 
the CG is fostering the development of different ‘Descrip-
tive Geometries’. However, these new ‘Computational 

Fig. 1. Survey of double pendulum trajectories through long exposure photographs 
(graphic elaboration by E. Calore, F. Giordano, E. Pettenà, IUAV University of Venice, 
Course on ‘Morphology of artefacts’, prof. Fabrizio Gay, academic year. 2016-2017).
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categorisation of bodies in the space as well as of image 
networks, reconstructing processes similar to those lead-
ing living beings to the recognition and aesthesic knowl-
edge of the objects of the world.

The (historical) translation among geometries
and the primordial concept of ‘distance’

Computational Geometry is the title of the final dis-
ser tation of Michael Shamos dealing with “the Issues 
that arise in solving geometric problems by machine 
at high speed and the fact that such devices have only 
recently been built obliges us to consider aspects of 
geometric computation that simply do not occur in 
classical mathematics, and new methods are required.” 
[Shamos, 1978, p. I]

Descriptive Geometries’ can investigate the object shape 
also through a reverse mechanism with respect to the 
traditional DG.
In the DG, as happens with the CAD modelling, the form 
is given ‘a priori’ compared to the concrete representation. 
On the contrary, in the CG, the form is derived ‘a poste-
riori’, and is implied as a geometric structure underlying a 
large amount of spatial data.
The CG is a morphological instrument which proposes 
to study patterns, stochastic regularities, dots, corrugations 
and un-dulations, the morphology of organic or geograph-
ic tissues, the tessellations of the alveoli, cracks, marbling, 
stripes, zebra patterns in animal and mineral pigmentations, 
ramifications, etc.
While the DG mainly acted as a representation instru-
ment, the CG is a form of ‘aesthesic’ geometry. Today the 
CG helps to develop instruments for the perception and 

Fig. 2. Example of two-dimensional Voronoi diagrams.
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An example of these issues is the so-called “Closest-Pair 
problem”, which requires the identification of the two clos-
est points in a certain series of n points. What we are try-
ing to roughly assess is, geometrically speaking, the result of 
an efficient calculation. However, if a machine measured the 
distance of each m = n � (n – 1) / 2 pairs of the n points and 
then arranged and compared the distances, it would carry 
out a O (n2) computational complexity task. Conversely, the 
author [Shamos 1978, p. 163] suggests a recursive algorithm 
based on the divide-et-impera principle, which reduced com-
plexity to O (n � log n). Basically, the calculation time on set 
of ten million points drop from one week to one second.
The above-mentioned scattered sequence of n points can 
be considered by the CG only through discrete mathemati-
cal models and the figure which best expresses the discre-
tisation of space is the Voronoi diagram. It consists (fig. 2) of 
the division of a certain space into distinct regions (called 
Voronoi cells) in such a way that each of them contains 
only the points closest to a given point (seed) referring to 
other points (seeds.) The boundaries of the Voronoi cells 
are places equidistant from two or more points (seeds.)
The qualitative meaning of ‘distance between two points’ 
redefines, in computational terms, the traditional catego-
ries of the geometric entities. Thus the ‘distance’ define 
not only the circle and the sphere –intended as a locus of 
points equidistant from the centre– but also the straight 

Fig. 3. Eccentricity and focal properties of conics. Fig. 4. Circles of Apollonius and lemniscates of Bernoulli with the hyperbolas, their 
orthogonal trajectories.

line and the plane, since they are a locus of points equi-
distant from two given points. Therefore, the straight line 
and the plane are the Voronoi diagram only for two points. 
The locus of points equidistant from a point and a straight 
line (or a plane) is obviously represented by a parabola (or 
a paraboloid of revolution.) In general, the metric defini-
tion of the conic sections proves that ‘equidistance’ is just 
a special case of the ‘distances ratios’ (= 1). In fact, conics 
are defined by their ‘eccentricity’, i.e. as is a loci of all points 
P whose distances PF from a given point F (focus) and Pd 
from a given straight line d (directrix) have a constant ra-
tio (PF / Pd = k). Obviously, the presence of an ellipse or 
hyperbole depends on whether k is bigger or smaller than 
one. After all, even circles or spheres can be regarded as 
loci of points P whose distances from two given points (F

1
 

and F
2
) have a constant ratio (PF

1
 / PF

2
 = k). Actually they 

are the circles (and spheres) of Apollonius, which degener-
ates into a straight line (and in a plane) when k = 1.  (fig. 4)
The metric property of the eccentricity (PF/Pd = k) de-
fines all the conics and is directly reflected by their focal 
properties. (fig. 3) Based on their definitions, the ellipse and 
the hyperbole can be intended, respectively, as loci of the 
points of a plane whose distances from two other given 
points (focus F

1
 and F

2
) have an unchanged sum (the ellipse 

PF
1
+ PF

2
 = k) and unchanged difference (the hyperbole PF

1
 

– PF
2
 = k). When k is equal to the F

1
F

2
 distance, the ellipse 
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degenerates into the finite F
1
F

2
 straight segment, while the 

hyperbola degenerates into the infinite F
2
F

1
 segment.

The eccentricity and focal properties of the conic sections, 
by analogy, help to define other curves and surfaces. For 
example, Conchoidal curve can be regarded as set of the 
points whose product of their distances from a given point 
and straight line is constant (PF � Pd = k). Conversely, (fig.4) 
the lemniscate which Jakob Bernoulli defined in 1694 by 
hybridizing the construction of the ellipse and circle of 
Apollonius (PF

1
 / PF

2
 = k) (fig. 5), can be intended as a lo-

cus of points of the plane whose product of their distances 
from two focuses (PF1 � PF2 = k2) is constant (= k2). The 
traditional eight-shaped lemniscate (fig. 6) result from k = 1; 
while when k <1 the curve degenerates into two distinct 
branches, two quartic ovals, or, when k > 1, it takes on the 
various shapes of Cassini Ovals. 
These examples prove that the emergence of new defini-
tions of curves and surfaces over the history of geometry 
transforms the previous definitions. After the invention of 
the conic sections, even the circle, the straight line and the 
coplanar pair of straight lines have become special cases: 
‘degenerate conics’. The most important fact in the histori-
cal development of the theory of conics is that the new 
properties streamlined the previous ones and, above all, 
defined physical properties.

The word ‘focus’ is physically and historically connected 
with the renown optical properties of the conics. In fact, 
considering (fig. 3) that each pair of ‘focal radii’ meeting 
in one point of the ellipse is always such that: 1*) their 
bisecting line is the normal of the curve (orthogonal to 
the tangent), and 2*) their extensions have a constant sum, 
then these geometrical properties physically lead to the 
fact that all the radius originated by a focus are reflected in 
the other focus (due to 1*) at the same time (due to 2*.)
Therefore, the energetic interpretation of ‘distance’ is shared 
by physics and geometry. Actually the Archimedean line –the 
shortest among the lines that have the same extremes– and 
the Euclidean one –a line that lies equally between its points 
(a curve that coincides with every tangent)– were already 
defined ab-antiquo in ‘energetic’ terms, like the circle of Aris-
totle, intended as the form of perfect motion.
From the Burning mirrors of Archimedes to the develop-
ment of mechanical and optical curves in the 17th century, 
up to the study of the patterns of electromagnetic fields in 
the 19th century, physics and geometry reflect a figurative 
conception of the science of extension.
Due to the imaginal nature of geometry there is not a 
single formalised way to categorize and figure out an entity 
or a geometric figure. The conceptualized and formalised 
‘eidetic categories’ rarely have a hierarchical network. The 

Fig. 5. Confocal Conics and Cassini ovals. Fig. 6. Different shapes of confocal Cassini ovals.
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Fig. 7. Sequence of limbs and cranial vault of vertrebrates by Leroi-Gourhan [Leroi-Gourhan1986] and application of diffeomorphisms to statistical analysis of 
skull shapes and profiles.
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fact that what we know about things is tied to what we 
know about other things also applies to geometry, al-
though it is conceived as a self-referential, symbolic and 
axiomatic language.
Actually, we can paraphrase correctly, for example, the def-
inition of ‘sphere’: locus of points equidistant from a given 
point. In terms of ‘distance ratios’ it can be regarded as:
1) locus of points whose ratio of their distances from two 
given points is constant (the above-mentioned sphere of 
Apollonius);
2) locus of the points P whose ‘distance’ PX from a 
given segment AB is always and only the square root of 
AX � (AB – AX);
3) two-axis ellipsoid with coincident focuses.
Recalling the right angle –or the isoptic curves– the sphere 
can be regarded as:
4) the locus of the vertices of all the right-angled triangles 
having the same hypotenuse AB; or, the set of the vertices 
of the right angles whose sides pass through two given 
points A and B; or the set of the points from which a given 
segment AB is always seen under a right angle.
From a differential point of view the sphere is:
5) the only surface of constant positive curvature;
6) the only surface with Geodesic curves all closed and 
congruent with one another;
7) the only surface (in addition to the plane) made up only 
of umbilical points.
Conversely, from the opposite ‘integral’ point of view, the 
sphere can be intended as:
8) the regular polyhedron with an infinite number of in-
finitesimal faces;
9) the envelope of the possible polygons whose apothems 
have the same extension and reach out to the same point;
Then there are many variants of the kinematic genesis of 
the sphere: surface of revolution of a circle around its di-
ameter; for example:
10) surface ‘of revolution’ in infinite ways, in every point;
11) the only surface that a plane always intersects into circles;
12) the simplest surface with a constant width, whose par-
allel tangents are always equidistant.
Eventually, the sphere could be effectively intended as a 
soap bubble, according to the physical principle of the 
stress minimisation, namely as
13) the littlest surface that covers a given volume.
These definitions –which somehow recall Queneau’s Ex-
ercises in Style– shape different concepts of the sphere. A 
bubble blown into a perfectly elastic membrane (def. 13) 

is very different from a ball produced with a lathe (def. 4 
and 10) or shaped (def. 5, 10 and 12), or woven with in-
terlocked rings (def. 6 and 11), or by stacking homothetic 
disks whose radius varies in consistency with the cosine of 
the spherical radius (paraphrase of def. 2.)
In order to mutually and geometrically reproduce these 
conceptualised images, it is necessary to apply the ener-
getic notion of ‘distance’. This notion is ‘primitive’ in three 
senses: logical, historical and psychological. It is logically 
preliminary to others and is older. It goes back to times 
when no distinction was made between physics and ge-
ometry, when the ‘distance’ ratios corresponded to the 
‘force’ ratio and the simplest figures –straight line and 
plane, circle and sphere– were just the least probable 
elements among the ‘disputed’ spaces between opposite 
forces.
On the one hand, the notion of ‘distance’ recalls the sense 
of ancient arithmetic operations between segments traced 
with a ruler and compass. On the other hand, it refers 
to the phenomenal and cultural properties of the physical 
objects. In this sense, it deals with a ‘figurative conception’ 
which has always been intrinsic in the history of geometry, 
emerging especially in the psychological genesis of the axi-
oms [Enriques 1906, pp. 174-201.] The idea that geometry 
is basically a figurative science –and not abstract– has been 
shared by the science of extension ‘realist’ school up to a 
project of a Semiophysics [Thom 1988.]

Conclusion: geometries and categorisation of the objects

The above-mentioned figurative conception of geometry 
leads her back to the field of the natural philosophy and 
the techniques [Thompson 1945.] It also helps better 
grasp the historical continuity and discontinuity of geom-
etry for the Design in the shift between the DG and the 
CG. From this point of view, the DG and CG are episodes 
which both stand out along the composite genealogies of 
two important chapters of natural philosophy:
1) the ‘Science of Form’ which flourished especially in 
naturalistic morphology, from ancient comparative anat-
omy to the morphogenetic theories of the 19th and 
20th century;
2) the ‘Science of Vision’, from the Euclidean optics to the 
Renaissance perspectiva artificialis, from the psychology of 
perception of the 19th-20th century up to the current 
computer and robotic vision.
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The ‘Science of Form’ and the ‘Science of Vision’ are very 
different from each other, but they have often acted as the 
‘objective’ and ‘subjective’ sides of analogous ‘morphologi-
cal questions’. They both share some problems and meth-
ods, some geometric and mathematical instruments that, 
after the third industrial revolution, were confronted with 
a quantum shift towards the techno-sciences and the cur-
rent digital dimension of the world.
1) Obviously, from the second half of the 19th century, 
morphometric and statistical comparative methods were 
applied to the natural sciences. They helped develop ty-
pologies taken from comprehensive corpora of exempla 
–mainly consisting of samples, calques or graphical rep-
resentations– categorised and parametrically arranged 
by degree of typicality. Starting from these corpora, each 
naturalistic typology has always been based on the corre-
lation of analogous characters of homologous samples of 
different bodies. Therefore, every typology presupposes a 
measurable taxonomy, i.e. a paradigm shared by a com-
parative specimens, and a mathematical criterion for the 
measurement of their differences. From a technical point 
of view, the geometric, metric and differential properties 
–’distance’ and continuity of curvatures in one point– are 
compared. These geometric transformations are called 
‘diffeomorphisms’ – somewhere between differential ge-

ometry and topology – and were predicted in the famous 
On Growth and Form by D’Arcy Thompson [1945]. In his 
works the English naturalist [Thompson 1945, pp. 1026-
1090] introduces the use of diagrams called ‘transforma-
tion graphs’: (fig. 7) graphs that describe the morphological 
variability of the bodies in terms of the ‘deformation’ of a 
reference grid made up of homologous lines in organisms 
and parts of different organisms represented at the same 
metric scale. Obviously, the ‘transformation diagrams’ can 
be performed only if there is a paradigm shared by the 
comparative bodies. In fact, they depend on the choice of 
the pairs of places (ontogenetically) homologous in dif-
ferent organisms. Therefore, this transformation network 
should have identified the closest parameter system to 
the ‘real form line growth’ (ontogenetic lines) as well as to 
those organism parts featuring (phylogenetic) speciation 
differences.
D’Arcy Thompson’s ‘science of form’ –in the revolution 
towards the current digital world and techno-sciences– 
has turned in comparative Biometrics and morphometrics 
which –since the Sixties– have been accompanying the 
amazing development of morphogenetic models in the 
field of theoretical chemistry, physics and, above all, theo-
retical biology.
2) The geometric models which explain the emergence 
of forms from matter are extended also to neurosciences. 
Today, the Neurogeometry [Petitot 2008] studies the func-
tional geometry of the perception system, with special 
reference to the low-level visual perception processes. 
It focuses on the translation of visual information from 
a 2D proximal (retinal) stimulus to the perceived form 
processed by the first visual cortex (V1). Obviously, these 
studies fall within the broader framework of the geomet-
ric models used in the study of the different stages of the 
visual perception process:
a) the extraction of the first morphological structures 
from the retinal image (positions, dimensions, directions, 
colours, contrasts, distances, motions), 
b) the emergence of visual forms, 
c) the extent of the articulation of surfaces in the envi-
ronment, 
d) the identification of regions and objects as ‘things’ of the 
actual environment, 
e) the attribution of the size and position of things, 
f) the perceptive segmentation of the ‘things’ into their 
‘parts’, 
g) the recognition of the objects, 

Fig. 8. Statistical shape analysis of the Karcher mean of vase shaped 
objects; The mean shape is displayed in the centre [Bauer, Bruveris, 
Michor 2014.]
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Fig. 9. Automatic recognition and categorization of an object through the inference of depth of a single image and the extraction of features from image 
repertoires [Yi et al. 2017].
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h) the attribution of (functional and cultural) categories to 
the perceived objects and situations.
For example, with reference to the ‘e’ stage, vision is similar 
to a ‘photogrammetric’ and ‘stereoscopic’ restitution of the 
seen scene according to the so-called “inverse (represen-
tation) problem” developed by the DG.
As regards the ‘c’ stage, a differential geometry is used 
which describes the luministic behaviour of the surfaces 
[Palmer 1999, pp. 243-246.] The perceptual computation 
of the curvatures is supposed to depend on the isophote 
lines, intended as an variation index point by point of the 
normals to the surface.
Differential geometry is applied also to the ‘f ’ stage. For 
example, based on the tendency [Hoffman 1998] to at-
tribute ‘names’ only to the convex parts of the objects, all 
the perception curvature indices of a surface are decisive 
[Koenderink 1972.]
The search for geometric models able to explain the per-
ceptive extraction of the most significant characteristics of 
the objects also involves the study of higher cognitive pro-
cesses (‘h’ stage), although a perceptive categorisation al-
ready takes place in the early perception stages. According 
to the main assumption, vision is guided by categorisation 
through computational economics strategies, as happens 
with the perceptive organization criteria already theorised 
by the Gestaltpsychologie which identify psychology and ge-
ometry of the image-form (Gestalt).
The shift of the computational paradigm included both 
geometry and the psychology of perception [Marr 2010.] 
In fact, in the same years, they are fully incorporated in 
the neural networks theory developed by Minsky and 
Papert [1990.]
The history of this convergence is long and well known. 
But what does the geometry developed within the de-
sign studies have to do with the convergent genealogy in 
the computational model of the various ‘morphologies’ 
arising from natural sciences? 
The first answer is historical. Since the second half 
of the 19th century, the morphological measurement 
of phylogenetics had involved also anthropology, then 
regarded as ‘the natural history of men.’ The com-
parative geometry of naturalia led to the artificialia 
ones, i.e. the diffeomorphism measurement method 
was also extended to the study of the historical and 
archaeological species of human ar tefacts, appropri-
ately divided into model corpora and typologies. (fig. 
8) Since then, methods similar to statistical biometrics 

have been applied to analytical archaeology [Clarke, 
Pinnock 1998] and today they have reached their fully 
accomplishment by working (on line) on digital model 
corpora deriving from the 3D scan of huge collections 
of findings.
The GC has significantly expanded the technical pos-
sibilities of the morphology of the findings and of the 
collections. In the era of big data, the CG allows for the 
extraction of geometries star ting from various types of 
data –from physical bodies, measurements, image web 
collections [ex. Heath et al. 2010] and network models, 
… (fig. 9)– thus performing semiotic elaborations well 
beyond the human possibilities [Stiegler 2016.]. The al-
gorithms of the GC exceed even the possibilities of 
human imagination, but not of their traceable history, 
where the technical and aesthetic genealogy cannot 
be separated.
As ‘morphology’ (science of form), Geometry is par t of 
the aesthetic knowledge invested in the construction 
of objects; especially, the ‘History of DG’, the ‘geneal-
ogy of the methods of projective representation’ and 
the ‘morphology of curves, surfaces and patterns’ are 
relevant points of view in the study of the evolution 
of (ar tistic and technical) ‘visual ar tefacts’; therefore  
these topics must refer to the thematic area of ‘geom-
etry in drawing for design’: a field that, from a historical 
point of view, stands out against the background of the 
millennial mutual exchange between ‘science of form’ 
and ‘science of perception’.
This thesis offers a unified –retrospective and pro-
spective– vision of the historical events related to the 
‘Geometry for Design’. This is the thesis that we have 
shown, star ting from the replacement –half a century 
ago– of DG with CG and indicating their continuity 
and discontinuity. 
In retrospect, we have highlighted the discontinuity 
between the mechanical-projective paradigm and the 
computational-informational one, superimposed on 
the deep continuity of a geometry intended as a natu-
ral science: a kind of knowledge that is always negotiat-
ed between ‘morphology’ and ‘theories of perception’. 
In prospect, we have proved the thesis by recognizing 
that today’s applications of CG are ar ticulated follow-
ing –step by step– the chapters of the psychology (and 
semiotics) of vision: from the elaboration of the proxi-
mal stimulus to the processes of perceptual, cognitive 
and cultural categorization.
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